http://farbe.li.tu-berlin.de/egr3/egr3l0na.txt/.ps; nur Vektorgrafik VG; Start-Ausgabe Siehe separate Bilder dieser Seite: http://farbe.li.tu-berlin.de/egr3/egr3.htm LABJND-Helligkeit L^* , Hellbezugswert-Unterscheidung dY, CIELAB-Helligkeit L*, CIE-Hellbezugswert-Unterscheidung sRGB-Dreieckshelligkeit t*, CIE-HellbezugswertuntersRGB-Dreieckshelligkeit t*, CIE-Hellbezugswertunter-Kontrast (Y/dY) und Empfindlichkeit(dY/Y)dYund CIE-Kontrast-Empfindlichkeit (Y/dY) scheidung dY und CIE-Kontrast (Y/dY) sRGB: siehe IEC 61966-2-1 scheidung dY und CIE-Kontrast (Y/dY) sRGB: siehe IEC 61966-2-1 Siehe ähnliche Dateien der ganzen Serie: Technische Information: http://farbe.li.tu LABJND-Helligkeit für alle Farben, L*w=50 für Yn=18 CIELAB-Helligkeit für alle Farben L*, =100: sRGB-Dreieckshelligkeit für achromatische Farben: W sRGB-Dreieckshelligkeit für chromatische Farben: RGB TUB-Registrierung: Anwendung $L* = 116 (Y/Y_n)^{1/3} - 16$ $t*_{sRGB,100} = 100 (Y/Y_n)^{1/2,4}$ $t_{sRGB,100}^* = 100 (Y/Y_n)^{1/2,4} (Y_n = 22(R), =71(G), =07(B))$ $L* = S_{xn}(x_n)^{cn}$ Für die Grauunterscheidung erhält man: Für die Grauunterscheidung erhält man: Für die Unterscheidung erhält man: Für die Grauunterscheidung erhält man: $dt^*_{sRGB,100}/dY = (1/2,4) (Y/Y_n)^{-1,4/2,4} = 0,42 (Y/Y_n)^{-0,58}$ $dL*/dY = (116/Y_n) (1/3) (Y/Y_n)^{-2/3}$ $dL*/dY = (116/Y_n) (1/3) (Y/Y_n)^{-2/3}$ $dt*_{sRGB,100}/dY = (1/2,4) (Y/Y_n)^{-1,4/2,4} = 0,42 (Y/Y_n)^{-0,58}$ und für $dt*_{\rm sRGB,100}=1$ (ungefähr 3 Schwellen) erhalten wir: $dY=2,4~(Y/Y_{\rm n})^{1,4/2,4}$ und für dL*=1 (ungefähr 3 Schwellen) erhalten wir: und für dL*=1 (ungefähr 3 Schwellen) erhalten wir: und für $dt^*_{\rm sRGB,100}$ =1 (ungefähr 3 Schwellen) erhalten wir: $dY=2,4~(Y/Y_{\rm n})^{1,4/2,4}$ $dY = 3 (Y_n/116) (Y/Y_n)^{2/3}$ $dY = (3(Y_n^{1/3})/116)(Y)^{2/3}$ oder $\log(dY) = \log(3(Y_n^{1/3})/116) + (2/3)\log(Y)$ $\log(dY) = \log(3(Y_n/116)) + (2/3)\log(Y/Y_n)$ oder $\log(dY) = \log(2,4) + (1,4/2,4) \log(Y/Y_p)$ oder $\log(dY) = \log(2,4) + (1,4/2,4) \log(Y/Y_n)$ deshalb ist in einem log-log-Diagramm die Steigung (2/3). deshalb ist in einem log-log-Diagramm die Steigung (2/3). deshalb ist in einem log-log-Diagramm die Steigung 1,4/2,4. deshalb ist in einem log-log-Diagramm die Steigung 1,4/2,4. für Beurteilung für die CIE-Kontrastempfindlichkeit und für dt*sRGB.100=1: für die CIE-Kontrastempfindlichkeit und für $dL^* = 1$ gilt: für die CIE-Kontrastempfindlichkeit und für $dL^* = 1$ gilt: für die CIE-Kontrastempfindlichkeit und für $dt*_{sRGB,100}=1$: $Y/dY = (Y_n^{1,4/2,4}/2,4) (Y/Y_n)^{1/2,4}$ $Y/dY = (Y_n^{1,4/2,4}/2,4) (Y/Y_n)^{1/2,4}$ $Y/dY = (1/3) (116/(Y_n^{-1/3})) Y^{1/3}$ $Y/dY = (1/3) (116/Y_p) (Y/Y_p)^{1/3}$ $\log(Y/dY) = \log((1/3)(116/(Y_n^{1/3})) + (1/3)\log(Y)$ oder $\log(Y/dY) = \log(Y_n^{1,4/2,4}/2,4) + 1/2,4 \log(Y/Y_n)$ oder $\log(Y/dY) = \log(Y_n^{1,4/2,4}/2,4) + 1/2,4 \log(Y/Y_n)$ $\log(Y/dY) = \log((1/3)(116/Y_n)) + (1/3)\log(Y/Y_n)$ 20230801-egr3/egr3l0na.txt/.ps CIELAB-Helligkeit L^* als Funktion des Normfarbwertes YKoordinaten L^* und Y für unbunte Farben elligkeit L^st als Funktion von log Yn L^st und log Y für unbunte Farber n T* und Y für 4 Farben WR CIELAB-Helligkeit: 1,9, 95,9 CIELAB-Helligkeit: Messung von Display- oder Druck-Ausgabe 18,0, 4<u>9,4</u> $(Y_n=100, Y>1)$ $(Y_{WR}, R_{0}=18, 3, 8, 11, 1, 3)$ http://farbe.li.tu-berlin.de/egrs.htm $\log D_{
m r}^{
m u}$ und $\log Y$ für unbunte Farben $(Y_n=100, Y>1)$ ΓUB-Material: $\log C_{
m r} = \log \left[(\, Y/\Delta Y)/(\, Y/\Delta Y)_{
m u}
ight]$ relativer CIE-Kontrast Koordinaten $\log C_{
m r}$ und $\log Y$ für unbunte Farben [\(\Delta Y/Y)/(\Delta Y/Y)_u\) relative CIE-Empfindlichkeit log S_, und log Y für unbunte Farben CIELAB relative Empfindlichkeit $\log C_r = \log(Y/Y_n)^1$ $\log S_r = \log(Y/Y_n)^{-1}$ Code=rha4ta TUB-Prüfvorlage egr3; spezielle farbmetrische Eigenschaften von Farbensehen und Bildtechnologie Vergleich CIELAB- und IECsRGB-Koordinaten, Dreieckshelligkeit, Kontrast und Empfindlichkeit