%!PS-Adobe-3.0 EPSF-3.0 DE421-7N %%BoundingBox: 70 90 226 206 %START PDFDE011.EPS /pdfmark17 where {pop} {userdict /pdfmark17 /cleartomark load put} ifelse /languagelevel where {pop languagelevel} {1} ifelse 2 lt { userdict (<<) cvn ([) cvn load put userdict (>>) cvn (]) cvn load put} if [ /Title (PostScript pictures: farbe.li.tu-berlin.de/DE42/DE42.HTM) /Author (compare K. Richter "Computergrafik ...": ISBN 3-8007-1775-1) /Subject (goto: http://farbe.li.tu-berlin.de http://130.149.60.45/~farbmetrik) /Keywords (image reproduction, colour devices) /Creator (klaus.richter@mac.com) /CreationDate (D:2018060112000) /ModDate (D:20180601112000) /DOCINFO pdfmark17 [ /View [ /Fit ] /DOCVIEW pdfmark17 %END PDFDE011 /BeginEPSF {% def % Prepare for EPS file /b4_Inc_state save def % Save state for cleanup /dict_count countdictstack def /op_count count 1 sub def % Count objects on op stack userdict begin % Make userdict current dict /showpage {} def 0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash newpath /languagelevel where % If level not equal to 1 then {pop languagelevel where % If level not equal to 1 then 1 ne {false setstrokeadjust false setoverprint } if } if } bind def /EndEPSF {% def % End for EPS file count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat % Clean up dict stack b4_Inc_state restore } bind def % !AUSTAUSCH Times-Roman -> Times-Roman-ISOLatin1=Times-I /Times-Roman findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse }forall /Encoding ISOLatin1Encoding def currentdict end /Times-ISOL1 exch definefont pop /Times-Italic findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse }forall /Encoding ISOLatin1Encoding def currentdict end /TimesI-ISOL1 exch definefont pop /Times-Bold findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse }forall /Encoding ISOLatin1Encoding def currentdict end /TimesB-ISOL1 exch definefont pop /Times-BoldItalic findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse }forall /Encoding ISOLatin1Encoding def currentdict end /TimesBI-ISOL1 exch definefont pop /FS {findfont exch scalefont setfont} bind def /MM {72 25.4 div mul} def /str {8 string } bind def /TK {250 16.67 div /Times-ISOL1 FS} bind def /TM {300 16.67 div /Times-ISOL1 FS} bind def /TG {350 16.67 div /Times-ISOL1 FS} bind def /TIK {250 16.67 div /TimesI-ISOL1 FS} bind def /TIM {300 16.67 div /TimesI-ISOL1 FS} bind def /TIG {350 16.67 div /TimesI-ISOL1 FS} bind def /TBK {250 16.67 div /TimesB-ISOL1 FS} bind def /TBM {300 16.67 div /TimesB-ISOL1 FS} bind def /TBG {350 16.67 div /TimesB-ISOL1 FS} bind def /TBIK {250 16.67 div /TimesBI-ISOL1 FS} bind def /TBIM {300 16.67 div /TimesBI-ISOL1 FS} bind def /TBIG {350 16.67 div /TimesBI-ISOL1 FS} bind def /RK {250 16.67 div /Times-Roman FS} bind def /RM {300 16.67 div /Times-Roman FS} bind def /RG {350 16.67 div /Times-Roman FS} bind def /RIK {250 16.67 div /Times-Italic FS} bind def /RIM {300 16.67 div /Times-Italic FS} bind def /RIG {350 16.67 div /Times-Italic FS} bind def /RBK {250 16.67 div /Times-Bold FS} bind def /RBM {300 16.67 div /Times-Bold FS} bind def /RBG {350 16.67 div /Times-Bold FS} bind def /RBIK {250 16.67 div /Times-BoldItalic FS} bind def /RBIM {300 16.67 div /Times-BoldItalic FS} bind def /RBIG {350 16.67 div /Times-BoldItalic FS} bind def /tolvfcol %Farbkreis-Reihenfolge [ (000) (F00) (FF0) (0F0) (0FF) (00F) (F0F) (FFF) (777) (700) (770) (070) (077) (007) (707) (F07) %15=R (333) (F77) (FF7) (7F7) (7FF) (77F) (F7F) (07F) %23=B (BBB) (F70) (7F0) (0F7) (07F) (70F) (F07) (0F7) %31=G ] def /tcmyfcol %Farbkreis-Reihenfolge [ (FFF) (0FF) (00F) (F0F) (F00) (FF0) (0F0) (000) (888) (8FF) (88F) (F8F) (F88) (FF8) (8F8) (0F8) %15=R (CCC) (088) (008) (808) (800) (880) (080) (F80) %23=B (444) (08F) (80F) (F08) (F80) (8F0) (0F8) (F08) %31=G ] def /tcmykfcol %Farbkreis-Reihenfolge [ (000F) (0FF0) (00F0) (F0F0) (F000) (FF00) (0F00) (0000) (0008) (0FF8) (00F8) (F0F8) (F008) (FF08) (0F08) (0F80) %15=R (000C) (0880) (0080) (8080) (8000) (8800) (0800) (F800) %23=B (0004) (0F80) (80F0) (F080) (F800) (8F00) (0F80) (F080) %31=G ] def /tolvfcols %Farbkreis-Reihenfolge [ (000*) (F00*) (FF0*) (0F0*) (0FF*) (00F*) (F0F*) (FFF*) (777*) (700*) (770*) (070*) (077*) (007*) (707*) (F07*) %15=R (333*) (F77*) (FF7*) (7F7*) (7FF*) (77F*) (F7F*) (07F*) %23=B (BBB*) (F70*) (7F0*) (0F7*) (07F*) (70F*) (F07*) (0F7*) %31=G ] def /tcmyfcols %Farbkreis-Reihenfolge [ (FFF*) (0FF*) (00F*) (F0F*) (F00*) (FF0*) (0F0*) (000*) (888*) (8FF*) (88F*) (F8F*) (F88*) (FF8*) (8F8*) (0F8*) %15=R (CCC*) (088*) (008*) (808*) (800*) (880*) (080*) (F80*) %23=B (444*) (08F*) (80F*) (F08*) (F80*) (8F0*) (0F8*) (F08*) %31=G ] def /tcmykfcols %Farbkreis-Reihenfolge [ (000F*) (0FF0*) (00F0*) (F0F0*) (F000*) (FF00*) (0F00*) (0000*) (0008*) (0FF8*) (00F8*) (F0F8*) (F008*) (FF08*) (0F08*) (0F80*) %15=R (000C*) (0880*) (0080*) (8080*) (8000*) (8800*) (0800*) (F800*) %23=B (0004*) (0F80*) (80F0*) (F080*) (F800*) (8F00*) (0F80*) (F080*) %31=G ] def /fcolors %CMYN 32 Testfarben Nr. 0 bis 31; Farbkreis-Reihenfolge [{0.0 0.0 0.0 1.0} {0.0 1.0 1.0 0.0} {0.0 0.0 1.0 0.0} {1.0 0.0 1.0 0.0} {1.0 0.0 0.0 0.0} {1.0 1.0 0.0 0.0} {0.0 1.0 0.0 0.0} {0.0 0.0 0.0 0.0} {0.0 0.0 0.0 0.5} {0.0 1.0 1.0 0.5} {0.0 0.0 1.0 0.5} {1.0 0.0 1.0 0.5} {1.0 0.0 0.0 0.5} {1.0 1.0 0.0 0.5} {0.0 1.0 0.0 0.5} {0.0 1.0 0.5 0.0} {0.0 0.0 0.0 0.75} {0.0 0.5 0.5 0.0} {0.0 0.0 0.5 0.0} {0.5 0.0 0.5 0.0} {0.5 0.0 0.0 0.0} {0.5 0.5 0.0 0.0} {0.0 0.5 0.0 0.0} {1.0 0.5 0.0 0.0} {0.0 0.0 0.0 0.25} {0.0 0.5 1.0 0.0} {0.5 0.0 1.0 0.0} {1.0 0.0 0.5 0.0} {1.0 0.5 0.0 0.0} {0.5 1.0 0.0 0.0} {0.0 1.0 0.5 0.0} {1.0 0.0 0.5 0.0} ] def /fak 0.5 def /Far %Farbkreis-Reihenfolge [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %R 16 17 18 19 20 21 22 23 %B 24 25 26 27 28 29 30 31 %G ] def /cFar %Kompensativ-Farbkreis-Reihenfolge [ 8 4 5 6 1 2 3 0 0 20 21 22 17 18 19 31 %G 24 12 13 14 9 10 11 2 %J 16 28 29 30 25 26 27 15 %R ] def /Btx %Farbkreis- -> %Btx-Reihenfolge [ 0 1 3 2 5 6 4 7 8 9 11 10 13 14 12 15 %R 16 17 19 18 21 22 20 23 %B 24 25 26 27 28 29 30 31 %G ] def /cBtx %Farbkreis- -> %Kompensativ-Btx-Reihenfolge [ 7 4 6 5 2 3 1 0 8 20 22 21 18 19 17 31 %G 24 12 14 13 10 11 9 2 %J 16 25 26 27 28 29 30 15 %R ] def /rec %x, y width heigth {/heigth exch def /width exch def moveto width 0 rlineto 0 heigth rlineto width neg 0 rlineto closepath } bind def /colrecfi %x y width heigth c m y k {setrgbcolor rec fill} bind def /colrecst %x y width heigth c m y k {setrgbcolor rec stroke} bind def /tzo {0.0 1.0 1.0 0.0} bind def %Reproduktionsfarben /tzl {1.0 0.0 1.0 0.0} bind def /tzv {1.0 1.0 0.0 0.0} bind def /tzc {1.0 0.0 0.0 0.0} bind def /tzm {0.0 1.0 0.0 0.0} bind def /tzy {0.0 0.0 1.0 0.0} bind def /tzn {0.0 0.0 0.0 1.00} bind def %Graureihe /tzd {0.0 0.0 0.0 0.75} bind def /tzz {0.0 0.0 0.0 0.50} bind def /tzh {0.0 0.0 0.0 0.25} bind def /tzw {0.0 0.0 0.0 0.00} bind def /tzr {0.0 1.0 0.5 0.0} bind def %Elementarfarben /tzg {1.0 0.0 0.5 0.0} bind def /tzb {1.0 0.5 0.0 0.0} bind def /tzj {0.0 0.0 1.0 0.0} bind def /tzrz {0.0 1.0 0.5 0.5} bind def %Elementarfarben vergraut /tzgz {1.0 0.0 0.5 0.5} bind def /tzbz {1.0 0.5 0.0 0.5} bind def /tzjz {0.0 0.0 1.0 0.5} bind def /tfo {tzo setcmykcolor} bind def /tfl {tzl setcmykcolor} bind def /tfv {tzv setcmykcolor} bind def /tfc {tzc setcmykcolor} bind def /tfm {tzm setcmykcolor} bind def /tfy {tzy setcmykcolor} bind def /tfn {tzn setcmykcolor} bind def /tfd {tzd setcmykcolor} bind def /tfz {tzz setcmykcolor} bind def /tfh {tzh setcmykcolor} bind def /tfw {tzw setcmykcolor} bind def /tfr {tzr setcmykcolor} bind def /tfg {tzg setcmykcolor} bind def /tfb {tzb setcmykcolor} bind def /tfj {tzj setcmykcolor} bind def /tfrz {tzrz setcmykcolor} bind def /tfgz {tzgz setcmykcolor} bind def /tfbz {tzbz setcmykcolor} bind def /tfjz {tzjz setcmykcolor} bind def %
% - %This is ps3d.inc ---------------------------------- % - Copyright Bill Casselman % - Original version 1.0 November, 1998 % - Version 1.1 December, 1999 % - Took out aliases for moveto etc. % - Made display-matrix a 3 x 4 homogeneous matrix, added it to the 3d gstack % - Allowed arbitrary eye location, 3d -> 2d projects onto z = 0 plane % - Although fancy stuff not yet implemented % - Made ght a variable % - Version 1.1 is *not* backwards compatible! % - Version 1.2 August, 2002 % - Thorough interpretation of matrices as arrays of columns and point vectors as rows % - And some speed up % - Similar rewriting of matrix.inc % - Again, backwards incompatible! % - Version 1.3 August, 2003 % - Rewriting shade for efficiency % - Thanks to Jim Blinn's book `A trip down the graphics pipeline' % - for several suggestions that (I hope) made this code cleaner % - by suggesting how useful homogeneous coordinates were. % November 10, 2003: added fancier shading % December 17, 2003: changed arguments for mkpath procedures % ------------------------------------------------ % - Inserting matrix.inc ---------------------- % - Vector calculations (usually good in any number of dimensions) ---------- % - matrices in this package are usually laid out in a single array by columns --- % - i.e. [ column1 column 2 ... ] % - but sometimes as a double array [ [ column1] [column2] ... ] % <double array> /to-single-array % <single-array> /to-double-array % <n> /identity % <u> <v> /dot-product % <u> <c> /vector-scale % <u> <v> /vector-add % <u> <v> /vectorssub % <u> /vector-length % <u> <v> cross-product % <axis> <angle> /rotation-matrix3d % v [a b c] /euclidean-reflect % [a b c] /reflection-matrix-3d % <m> <n> /matrix-mul % <m> <v> /matrix-vector % <v> <m> /vector-matrix % <m> /transpose % <m> 3x3-det % <m> /3x3-inverse % <u> <v> /angle-between % <x> /acos % <x> <a> <a^v> /skew-reflect % <a> <a^v> /skew-reflection-matrix % - matrices in this package are laid out in a single array by columns --------- % a double array: cannot be empty - just lays out all items /to-single-array { % [ [. . . ][ . . . ] ] => [ . . . . . . ] [ exch { % successive rows aload pop } forall ] } def % ---------------------------------------------- % [ ... ] a square matrix made into an array of columns /to-double-array { 4 dict begin /A exch def /N A length sqrt round cvi def /i 0 def [ N { [ N { A i get /i i 1 add def } repeat ] } repeat ] end } def % ---------------------------------------- % returns the nxn identity matrix as single array /identity { 1 dict begin /n exch def [ n 1 sub { 1 n { 0 } repeat } repeat 1 ] end } def % --- vector algebra -------------------------------- % u v -> u.v /dot-product { 1 dict begin /v exch def 0 0 % u s i 3 2 roll { % s i u[i] v % s i u[i] v 2 index get mul % s i u[i]*v[i] 3 2 roll % i u[i]*v[i] s add exch 1 add % s i } forall pop end } def % v c -> c.v /vector-scale { 1 dict begin /c exch def [ exch { % s i u[i] c mul % s i u[i] v } forall ] end } def % u v -> u+v /vector-add { 1 dict begin /v exch def [ exch 0 % u i exch { % i u[i] v % i u[i] v 2 index get add % i u[i]+v[i] exch 1 add % i } forall pop ] end } def % u v -> u-v /vector-sub { 1 dict begin /v exch def [ exch 0 % u i exch { % i u[i] v % i u[i] v 2 index get sub % i u[i]+v[i] exch 1 add % i } forall pop ] end } def % [x y z ... ] -> r % watch out for overflow /vector-length { 1 dict begin dup % find maximum entry /max 0 def { % max abs dup max gt { % if abs gt max /max exch def } { pop } ifelse } forall max 0 ne { 0 exch { % 0 v[i] max div dup mul add } forall sqrt max mul } { pop 0 } ifelse end } def % v -> v/|v| /normalized { 1 dict begin dup % v v vector-length /r exch def [ exch { r div } forall ] end } def % u v % u0 u1 u2 % v0 v1 v2 % -> u x v /cross-product { 2 dict begin /v exch def /u exch def [ u 1 get v 2 get mul v 1 get u 2 get mul sub v 0 get u 2 get mul u 0 get v 2 get mul sub u 0 get v 1 get mul v 0 get u 1 get mul sub ] end } def % -------------------------------------------------------------- % axis A -> a matrix /rotation-matrix3d { 8 dict begin dup cos /c exch def sin /s exch def /a exch def /r a vector-length def /a0 a 0 get r div def /a1 a 1 get r div def /a2 a 2 get r div def [ % e = [1 0 0] etc. % e0 = (e.a)a, e# = e - e0, e* = a x e = a x e0 + a x e# = a x e# /x a0 def /e0 [a0 x mul a1 x mul a2 x mul] def /e# [1 e0 0 get sub e0 1 get neg e0 2 get neg] def % [a0 a1 a2] % [ 1 0 0] /e* [0 a2 a1 neg ] def e# 0 get c mul e* 0 get s mul add e0 0 get add e# 1 get c mul e* 1 get s mul add e0 1 get add e# 2 get c mul e* 2 get s mul add e0 2 get add /x a1 def /e0 [a0 x mul a1 x mul a2 x mul] def /e# [e0 0 get neg 1 e0 1 get sub e0 2 get neg] def % [a0 a1 a2] % [ 0 1 0] /e* [a2 neg 0 a0 ] def e# 0 get c mul e* 0 get s mul add e0 0 get add e# 1 get c mul e* 1 get s mul add e0 1 get add e# 2 get c mul e* 2 get s mul add e0 2 get add /x a2 def /e0 [a0 x mul a1 x mul a2 x mul] def /e# [e0 0 get neg e0 1 get neg 1 e0 2 get sub] def % [a0 a1 a2] % [ 0 0 1] /e* [a1 a0 neg 0 ] def e# 0 get c mul e* 0 get s mul add e0 0 get add e# 1 get c mul e* 1 get s mul add e0 1 get add e# 2 get c mul e* 2 get s mul add e0 2 get add ] % [ r0 r1 r2 r3 r4 r5 r6 r7 r8 ] -> [r0 r3 r6 r1 r4 r7 r2 r5 r8 ] /r exch def [ r 0 get r 3 get r 6 get r 1 get r 4 get r 7 get r 2 get r 5 get r 8 get ] end } def % v a -> v - 2(a.v)/(a.a) a /euclidean-reflect { 16 dict begin /a exch def /v exch def /N a length def /d a v dot-product a dup dot-product div 2 mul def [ 0 v { % i v[i] exch dup 1 add % v[i] i i+1 3 1 roll % i+1 v[i] i a exch get d mul % i+1 v[i] a[i]*d sub % i+1 v[i]-d*a[i] exch % rv[i] i+1 } forall pop ] end } def % f = [A B C] => linear 3d transformation: f not necessarily normalized % Rv = v - 2 <f', v> f' /reflection-matrix3d { 3 dict begin aload pop /C exch def /B exch def /A exch def /r [ A B C ] vector-length def /A A r div def /B B r div def /C C r div def [ 1 A A mul dup add sub B A mul dup add neg C A mul dup add neg A B mul dup add neg 1 B B mul dup add sub C B mul dup add neg A C mul dup add neg B C mul dup add neg 1 C C mul dup add sub ] end } def /matrix-mul { 8 dict begin /B exch def /A exch def /n A length sqrt round cvi def % 0 1 ... % n n+1 ... % 2n 2n+1 ... [ 0 n { % i = initial index of the column on the stack = 0, n, 2n ... % after all previous entries dup n add exch 0 n { % i+n i j on stack % j = initial index of the row 2 copy 1 add % i+n i j i j+1 4 2 roll % i+n i j+1 i j /ell exch def /k exch def % i+n i j+1 0 n { % i+n i j+1 s A ell get B k get mul add /k k 1 add def /ell ell n add def } repeat 4 1 roll % s i+n i j+1 } repeat pop pop % s i+n } repeat pop ] end } def % A v: A = [ column 1, column 2, ... , column n ] /matrix-vector { 8 dict begin /v exch def /r v length def /A exch def /c A length r idiv def [ 0 1 c 1 sub { /i exch def % i = initial index of the row 0 0 r { % s j on stack dup 1 add % s j j+1 3 1 roll % j+1 s j v exch get A i get mul add % j+1 s exch /i i r add def } repeat % s r pop } for ] end } def % v A: A = [ column1 column2 ... ] /vector-matrix { 8 dict begin /A exch def /v exch def /c v length def /r A length c idiv def [ /i 0 def r { % i = initial index of the row /j 0 def 0 c { A i get v j get mul add /j j 1 add def /i i 1 add def } repeat } repeat ] end } def % a square matrix m x m % [i, j] = n*i + j /transpose { 4 dict begin /M exch def /n M length sqrt round cvi def [ /k 0 def n { /i k def n { M i get /i i n add def } repeat /k k 1 add def } repeat ] end } def /3x3-det { 1 dict begin /m exch def m 0 get m 4 get mul m 8 get mul m 1 get m 5 get mul m 6 get mul add m 2 get m 3 get mul m 7 get mul add m 2 get m 4 get mul m 6 get mul sub m 1 get m 3 get mul m 8 get mul sub m 0 get m 5 get mul m 7 get mul sub end } def /3x3-inverse { 2 dict begin /m exch def /d m 3x3-det def [ m 4 get m 8 get mul m 5 get m 7 get mul sub d div m 2 get m 7 get mul m 1 get m 8 get mul sub d div m 1 get m 5 get mul m 4 get m 2 get mul sub d div m 5 get m 6 get mul m 3 get m 8 get mul sub d div m 0 get m 8 get mul m 2 get m 6 get mul sub d div m 2 get m 3 get mul m 0 get m 5 get mul sub d div m 3 get m 7 get mul m 6 get m 4 get mul sub d div m 1 get m 6 get mul m 0 get m 7 get mul sub d div m 0 get m 4 get mul m 1 get m 3 get mul sub d div ] end } def /acos { dup dup % x x x mul 1 sub neg % x 1-x^2 sqrt exch atan } def % u v /angle-between { dup vector-length % u v |v| 3 1 roll % |v| u v 1 index % |v| u v u dot-product % |v| u u.v exch vector-length % |v| u.v |u| div exch div acos } def % x a av -> x - <a, x> av /skew-reflect { 4 dict begin /av exch def /a exch def /x exch def /d x a dot-product def [ 0 1 x length 1 sub { /i exch def x i get av i get d mul sub } for ] end } def % a av -> matrix /skew-reflection-matrix { 8 dict begin /av exch def /a exch def /n a length def [ 0 1 n 1 sub { /i exch def [ n {0} repeat ] dup i 1 put % e[i] a av skew-reflect } for ] to-single-array transpose end } def % - closing matrix.inc ------------------------ % - Defining PostScript commands' equivalents ---------- % - Coordinates in three dimensions ------------------- % There are three steps to drawing something in 3D: % 1. Converting from user 3d coords to default 3d coords % 2. Projecting onto (x, y)-plane % 3. Drawing the image on that plane % These are more or less independent. % The last step is completely controlled by the usual PS stuff. % The first and second are handled by 3d stuff here. % - Initialize and manipulate the 3d gstack ----------- /gmax 64 def /ght 0 def % gstack = [[t0 d0 dm0] [t1 d2 dm1] [t2 d2 dm2] ... [t(gmax-1) d(gmax-1) dm(gmax-1)] ] % the ctm is t[ght] % the dual ctm is at d[ght] % they are 4 x 4 % display-matrix = 3 x 4 /gstack3d gmax array def % start with orthogonal projection to positive z-axis gstack3d 0 [ [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1] [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1] [ 1 0 0 0 0 1 0 0 0 0 0 1] ] put /gsave3d { /ctm gstack3d ght get def /ght ght 1 add def ght gmax eq { (3d graphics stack overflow!) == quit } if gstack3d ght [ ctm 0 get ctm 1 get ctm 2 get ] put } def /grestore3d { /ght ght 1 sub def ght 0 lt { (3d graphics stack underflow!) == quit } if } def % n - restores to depth n /gpop3d { /ght exch def } def % [T T* dm]: sets cgfx3d = [T T* dm] /gset3d { gstack3d % [T T* d] g ght % [T T* d] g ght 3 2 roll % g ght [T T* d] put } def % => [T T* dm] /cgfx3d { gstack3d ght get } def /ctm3d { gstack3d ght get 0 get } def /cim3d { gstack3d ght get 1 get } def /cdm3d { gstack3d ght get 2 get } def % cpt3d isthe last 3d point drawn to /currentpoint3d { cpt3d cgfx3d 1 get transform3d aload pop % x y z w pop } def % - Sets up projection into 2D ------------------- % O = [x y z w] % sets display-matrix perspective onto z = 0 plane /display-matrix { cgfx3d 2 get } def % [z0 0 -x0 0 % 0 z0 -y0 0 % 0 0 -w0 z0] % (transposed) % gives perspective onto point in z=0 plane % from [x0 y0 z0 w0] /set-eye { 4 dict begin aload pop /w0 exch def /z0 exch def /y0 exch def /x0 exch def gstack3d ght get 2 [ z0 0 x0 neg 0 0 z0 y0 neg 0 0 0 w0 neg z0] put end } def /get-eye { 1 dict begin /d display-matrix def [d 2 get neg d 6 get neg d 0 get d 10 get neg] end } def /get-virtual-eye { get-eye cgfx3d 1 get transform3d } def % - backwards compatibility ----------------------------- /origin { get-eye } def /eye { get-eye } def /set-display { set-eye } def % - Manipulate the current transformation matrix ----- % x y z /translate3d { 8 dict begin /z exch def /y exch def /x exch def /ctm cgfx3d def /T ctm 0 get def [ [ T 0 get T 1 get T 2 get T 0 get x mul T 1 get y mul add T 2 get z mul add T 3 get add T 4 get T 5 get T 6 get T 4 get x mul T 5 get y mul add T 6 get z mul add T 7 get add T 8 get T 9 get T 10 get T 8 get x mul T 9 get y mul add T 10 get z mul add T 11 get add T 12 get T 13 get T 14 get T 12 get x mul T 13 get y mul add T 14 get z mul add T 15 get add ] /T ctm 1 get def [ T 0 get T 12 get x mul sub T 1 get T 13 get x mul sub T 2 get T 14 get x mul sub T 3 get T 15 get x mul sub T 4 get T 12 get y mul sub T 5 get T 13 get y mul sub T 6 get T 14 get y mul sub T 7 get T 15 get y mul sub T 8 get T 12 get z mul sub T 9 get T 13 get z mul sub T 10 get T 14 get z mul sub T 11 get T 15 get z mul sub T 12 get T 13 get T 14 get T 15 get ] ctm 2 get ] end gset3d } def % ------------------------------------------------------ % axis A /rotate3d { 4 dict begin rotation-matrix3d /R exch def /C cgfx3d def /T C 0 get def [ [ % first row T 0 get R 0 get mul T 1 get R 3 get mul add T 2 get R 6 get mul add T 0 get R 1 get mul T 1 get R 4 get mul add T 2 get R 7 get mul add T 0 get R 2 get mul T 1 get R 5 get mul add T 2 get R 8 get mul add T 3 get % second row T 4 get R 0 get mul T 5 get R 3 get mul add T 6 get R 6 get mul add T 4 get R 1 get mul T 5 get R 4 get mul add T 6 get R 7 get mul add T 4 get R 2 get mul T 5 get R 5 get mul add T 6 get R 8 get mul add T 7 get % third row T 8 get R 0 get mul T 9 get R 3 get mul add T 10 get R 6 get mul add T 8 get R 1 get mul T 9 get R 4 get mul add T 10 get R 7 get mul add T 8 get R 2 get mul T 9 get R 5 get mul add T 10 get R 8 get mul add T 11 get % fourth row T 12 get R 0 get mul T 13 get R 3 get mul add T 14 get R 6 get mul add T 12 get R 1 get mul T 13 get R 4 get mul add T 14 get R 7 get mul add T 12 get R 2 get mul T 13 get R 5 get mul add T 14 get R 8 get mul add T 15 get ] /T C 1 get def % T = T^-1 % => R^-1 T^-1 [ R 0 get T 0 get mul R 3 get T 4 get mul add R 6 get T 8 get mul add R 0 get T 1 get mul R 3 get T 5 get mul add R 6 get T 9 get mul add R 0 get T 2 get mul R 3 get T 6 get mul add R 6 get T 10 get mul add R 0 get T 3 get mul R 3 get T 7 get mul add R 6 get T 11 get mul add % ------------------------ R 1 get T 0 get mul R 4 get T 4 get mul add R 7 get T 8 get mul add R 1 get T 1 get mul R 4 get T 5 get mul add R 7 get T 9 get mul add R 1 get T 2 get mul R 4 get T 6 get mul add R 7 get T 10 get mul add R 1 get T 3 get mul R 4 get T 7 get mul add R 7 get T 11 get mul add % ------------------------ R 2 get T 0 get mul R 5 get T 4 get mul add R 8 get T 8 get mul add R 2 get T 1 get mul R 5 get T 5 get mul add R 8 get T 9 get mul add R 2 get T 2 get mul R 5 get T 6 get mul add R 8 get T 10 get mul add R 2 get T 3 get mul R 5 get T 7 get mul add R 8 get T 11 get mul add T 12 get T 13 get T 14 get T 15 get ] C 2 get ] end gset3d } def % f = [A B C D] P % f = 0 is the *affine* reflection plane % v = v* + v0 with v* on f = 0 and v0 in P-direction => v* - v0 % The map is Q => f(P)*Q - 2*f(Q)P % It is of order two. % % f(P) I - % % 2A*P[0] 2B*P[0] 2C*P[0] 2D*P[0] % 2A*P[1] 2B*P[1] 2C*P[1] 2D*P[1] % 2A*P[2] 2B*P[2] 2C*P[2] 2D*P[2] % 2A*P[3] 2B*P[3] 2C*P[3] 2D*P[3] % % Matrix = f(P) I - P f % set s0 = (T row 0)*P % T x this = % f(P)T[0,0]-A*s -B*s -C*s -D*s /affine-reflect3d { 4 dict begin aload pop /P3 exch def /P2 exch def /P1 exch def /P0 exch def aload pop /D exch def /C exch def /B exch def /A exch def /fP A P0 mul B P1 mul add C P2 mul add D P3 mul add def /A A dup add def /B B dup add def /C C dup add def /D D dup add def [ /T cgfx3d 0 get def [ /s % = (T row 1)*P T 0 get P0 mul T 1 get P1 mul add T 2 get P2 mul add T 3 get P3 mul add def fP T 0 get mul A s mul sub fP T 1 get mul B s mul sub fP T 2 get mul C s mul sub fP T 3 get mul D s mul sub /s % = (T row 1)*P T 4 get P0 mul T 5 get P1 mul add T 6 get P2 mul add T 7 get P3 mul add def fP T 4 get mul A s mul sub fP T 5 get mul B s mul sub fP T 6 get mul C s mul sub fP T 7 get mul D s mul sub /s % = (T row 2)*P T 8 get P0 mul T 9 get P1 mul add T 10 get P2 mul add T 11 get P3 mul add def fP T 8 get mul A s mul sub fP T 9 get mul B s mul sub fP T 10 get mul C s mul sub fP T 11 get mul D s mul sub /s % = (T row 3)*P T 12 get P0 mul T 13 get P1 mul add T 14 get P2 mul add T 15 get P3 mul add def fP T 12 get mul A s mul sub fP T 13 get mul B s mul sub fP T 14 get mul C s mul sub fP T 15 get mul D s mul sub ] /T cgfx3d 1 get def /f0 % f paired with columns of T T 0 get A mul T 4 get B mul add T 8 get C mul add T 12 get D mul add def /f1 % f paired with columns of T T 1 get A mul T 5 get B mul add T 9 get C mul add T 13 get D mul add def /f2 % f paired with columns of T T 2 get A mul T 6 get B mul add T 10 get C mul add T 14 get D mul add def /f3 % f paired with columns of T T 3 get A mul T 7 get B mul add T 11 get C mul add T 15 get D mul add def [ fP T 0 get mul f0 P0 get mul sub fP T 1 get mul f1 P0 get mul sub fP T 2 get mul f2 P0 get mul sub fP T 3 get mul f3 P0 get mul sub fP T 4 get mul f0 P1 get mul sub fP T 5 get mul f1 P1 get mul sub fP T 6 get mul f2 P1 get mul sub fP T 7 get mul f3 P1 get mul sub fP T 8 get mul f0 P2 get mul sub fP T 9 get mul f1 P2 get mul sub fP T 10 get mul f2 P2 get mul sub fP T 11 get mul f3 P2 get mul sub fP T 12 get mul f0 P3 get mul sub fP T 13 get mul f1 P3 get mul sub fP T 14 get mul f2 P3 get mul sub fP T 15 get mul f3 P3 get mul sub ] cgfx3d 2 get ] end gset3d } def % 3x3 M /concat3d { 4 dict begin /M exch def [ /T cgfx3d 0 get def [ T 0 get M 0 get mul T 1 get M 3 get mul add T 2 get M 6 get mul add T 0 get M 1 get mul T 1 get M 4 get mul add T 2 get M 7 get mul add T 0 get M 2 get mul T 1 get M 5 get mul add T 2 get M 8 get mul add T 3 get T 4 get M 0 get mul T 5 get M 3 get mul add T 6 get M 6 get mul add T 4 get M 1 get mul T 5 get M 4 get mul add T 6 get M 7 get mul add T 4 get M 2 get mul T 5 get M 5 get mul add T 6 get M 8 get mul add T 7 get T 8 get M 0 get mul T 9 get M 3 get mul add T 10 get M 6 get mul add T 8 get M 1 get mul T 9 get M 4 get mul add T 10 get M 7 get mul add T 8 get M 2 get mul T 9 get M 5 get mul add T 10 get M 8 get mul add T 11 get T 12 get M 0 get mul T 13 get M 3 get mul add T 14 get M 6 get mul add T 12 get M 1 get mul T 13 get M 4 get mul add T 14 get M 7 get mul add T 12 get M 2 get mul T 13 get M 5 get mul add T 14 get M 8 get mul add T 15 get ] /T cgfx3d 1 get def /M M 3x3-inverse def [ M 0 get T 0 get mul M 1 get T 4 get mul add M 2 get T 8 get mul add M 0 get T 1 get mul M 1 get T 5 get mul add M 2 get T 9 get mul add M 0 get T 2 get mul M 1 get T 6 get mul add M 2 get T 10 get mul add M 0 get T 3 get mul M 1 get T 7 get mul add M 2 get T 11 get mul add % ----------------------------- M 3 get T 0 get mul M 4 get T 4 get mul add M 5 get T 8 get mul add M 3 get T 1 get mul M 4 get T 5 get mul add M 5 get T 9 get mul add M 3 get T 2 get mul M 4 get T 6 get mul add M 5 get T 10 get mul add M 3 get T 3 get mul M 4 get T 7 get mul add M 5 get T 11 get mul add % ----------------------------- M 6 get T 0 get mul M 7 get T 4 get mul add M 8 get T 8 get mul add M 6 get T 1 get mul M 7 get T 5 get mul add M 8 get T 9 get mul add M 6 get T 2 get mul M 7 get T 6 get mul add M 8 get T 10 get mul add M 6 get T 3 get mul M 7 get T 7 get mul add M 8 get T 11 get mul add % ----------------------------- T 12 get T 13 get T 14 get T 15 get ] cgfx3d 2 get ] end gset3d } def % % v => v - 2 <v, a> a % % Matrix = I - 2 a a % a /reflect3d { 4 dict begin reflection-matrix3d concat3d end } def % [x y z w] [a00 a01 a02 a03 ... ] % but the vector is a linear function % so it is multiplying by transpose % if T is the current ctm3d, the point P -> P T transform3d % but the plane f=0 -> f T^{-1} dual-transform3d /dual-transform3d { 4 dict begin /v exch def /T exch def [ v 0 get T 0 get mul v 1 get T 4 get mul add v 2 get T 8 get mul add v 3 get T 12 get mul add v 0 get T 1 get mul v 1 get T 5 get mul add v 2 get T 9 get mul add v 3 get T 13 get mul add v 0 get T 2 get mul v 1 get T 6 get mul add v 2 get T 10 get mul add v 3 get T 14 get mul add v 0 get T 3 get mul v 1 get T 7 get mul add v 2 get T 11 get mul add v 3 get T 15 get mul add ] end } def % 4d to 3d homogeneous /project3d { 4 dict begin /T exch def /v exch def [ T 0 get v 0 get mul T 1 get v 1 get mul add T 2 get v 2 get mul add T 3 get v 3 get mul add T 4 get v 0 get mul T 5 get v 1 get mul add T 6 get v 2 get mul add T 7 get v 3 get mul add T 8 get v 0 get mul T 9 get v 1 get mul add T 10 get v 2 get mul add T 11 get v 3 get mul add ] end } def % [x y z w] [a00 a01 a02 a03 ... ] /transform3d { 4 dict begin /T exch def /v exch def [ T 0 get v 0 get mul T 1 get v 1 get mul add T 2 get v 2 get mul add T 3 get v 3 get mul add T 4 get v 0 get mul T 5 get v 1 get mul add T 6 get v 2 get mul add T 7 get v 3 get mul add T 8 get v 0 get mul T 9 get v 1 get mul add T 10 get v 2 get mul add T 11 get v 3 get mul add T 12 get v 0 get mul T 13 get v 1 get mul add T 14 get v 2 get mul add T 15 get v 3 get mul add ] end } def % sx sy sz /scale3d { 8 dict begin /sz exch def /sy exch def /sx exch def /T cgfx3d 0 get def [ [ T 0 get sx mul T 1 get sy mul T 2 get sz mul T 3 get T 4 get sx mul T 5 get sy mul T 6 get sz mul T 7 get T 8 get sx mul T 9 get sy mul T 10 get sz mul T 11 get T 12 get sx mul T 13 get sy mul T 14 get sz mul T 15 get ] /T cgfx3d 1 get def [ T 0 get sx div T 1 get sx div T 2 get sx div T 3 get sx div T 4 get sy div T 5 get sy div T 6 get sy div T 7 get sy div T 8 get sz div T 9 get sz div T 10 get sz div T 11 get sz div T 12 get T 13 get T 14 get T 15 get ] cgfx3d 2 get ] end gset3d } def % [ <9> ] i /row { 4 dict begin /i exch def /a exch def a length 9 eq { /i i 3 mul def /n i 2 add def } { /i i 4 mul def /n i 3 add def } ifelse [ i 1 n { a exch get } for ] end } def % projects from P onto f=Ax+By+Cz+D=0 % two parameters: f = [A B C D] and P % The map is Q => f(P)*Q - f(Q)P % It is idempotent. % % f(P) I - % % A*P[0] A*P[1] A*P[2] A*P[3] % B*P[0] B*P[1] B*P[2] B*P[3] % C*P[0] C*P[1] C*P[2] C*P[3] % D*P[0] D*P[1] D*P[2] D*P[3] % % Matrix = f(P) I - P f % set s0 = (T row 0)*P % T x this = % f(P)T[0,0]-A*s -B*s -C*s -D*s /plane-project { 12 dict begin aload pop /P3 exch def /P2 exch def /P1 exch def /P0 exch def aload pop /D exch def /C exch def /B exch def /A exch def /fP A P0 mul B P1 mul add C P2 mul add D P3 mul add def [ /T cgfx3d 0 get def [ /s % = (T row 0)*P T 0 get P0 mul T 1 get P1 mul add T 2 get P2 mul add T 3 get P3 mul add def fP T 0 get mul A s mul sub fP T 1 get mul B s mul sub fP T 2 get mul C s mul sub fP T 3 get mul D s mul sub /s % = (T row 1)*P T 4 get P0 mul T 5 get P1 mul add T 6 get P2 mul add T 7 get P3 mul add def fP T 4 get mul A s mul sub fP T 5 get mul B s mul sub fP T 6 get mul C s mul sub fP T 7 get mul D s mul sub /s % = (T row 2)*P T 8 get P0 mul T 9 get P1 mul add T 10 get P2 mul add T 11 get P3 mul add def fP T 8 get mul A s mul sub fP T 9 get mul B s mul sub fP T 10 get mul C s mul sub fP T 11 get mul D s mul sub /s % = (T row 3)*P T 12 get P0 mul T 13 get P1 mul add T 14 get P2 mul add T 15 get P3 mul add def fP T 12 get mul A s mul sub fP T 13 get mul B s mul sub fP T 14 get mul C s mul sub fP T 15 get mul D s mul sub ] /T cgfx3d 1 get def [ /s T 0 get T 1 get add T 2 get add T 3 get add def s A mul s B mul s C mul s D mul /s T 4 get T 5 get add T 6 get add T 7 get add def s A mul s B mul s C mul s D mul /s T 8 get T 9 get add T 10 get add T 11 get add def s A mul s B mul s C mul s D mul /s T 12 get T 13 get add T 14 get add T 15 get add def s A mul s B mul s C mul s D mul ] cgfx3d 2 get ] end gset3d } def % - Drawing commands in 3D -------------------------- % P displayed = [x y w z] => [X Y W] -> [X/W Y/W] /render { 8 dict begin aload pop /v3 exch def /v2 exch def /v1 exch def /v0 exch def /T display-matrix def /x T 0 get v0 mul T 1 get v1 mul add T 2 get v2 mul add T 3 get v3 mul add def /y T 4 get v0 mul T 5 get v1 mul add T 6 get v2 mul add T 7 get v3 mul add def /w T 8 get v0 mul T 9 get v1 mul add T 10 get v2 mul add T 11 get v3 mul add def w 0 eq { (Perspective: division by zero!) == quit } if x w div y w div end } def % x y z -> x y /transformto2d { [ 4 1 roll 1 ] ctm3d transform3d render } def /cpt3d 4 array def /lm3d 4 array def % cpt3d is a point in the "real" 3d world % Should we build the current 3d path for reuse? % x y z /moveto3d { 1 [ 5 1 roll ] cgfx3d 0 get transform3d aload pop cpt3d astore render moveto cpt3d aload pop lm3d astore pop } def % x y z /lineto3d { 1 [ 5 1 roll ] cgfx3d 0 get transform3d aload pop cpt3d astore render lineto } def % x y z /rmoveto3d { 0 [ 5 1 roll ] cgfx3d 0 get transform3d % [dx dy dz 0] dup 0 get cpt3d 0 get add % [dx dy dz 0] x+dx exch dup 1 get cpt3d 1 get add % x+dx [dx dy dz dw] y+dy exch dup 2 get cpt3d 2 get add % x+dx x+dy [dx dy dz dw] z+dz exch % x+dx y+dy z+dz [dx dy dz dw] 3 get cpt3d 3 get add % x+dx x+dy z+dz w+dw cpt3d astore render moveto cpt3d aload pop lm3d astore pop } def % x y z /rlineto3d { 0 [ 5 1 roll ] cgfx3d 0 get transform3d % [dx dy dz 0] dup 0 get cpt3d 0 get add % [dx dy dz 0] x+dx exch dup 1 get cpt3d 1 get add % x+dx [dx dy dz dw] y+dy exch dup 2 get cpt3d 2 get add % x+dx x+dy [dx dy dz dw] z+dz exch % x+dx y+dy z+dz [dx dy dz dw] 3 get cpt3d 3 get add % x+dx x+dy z+dz w+dw cpt3d astore render lineto } def % x1 y1 z1 x2 y2 z2 x3 y3 z3 /curveto3d { 16 dict begin /z3 exch def /y3 exch def /x3 exch def /z2 exch def /y2 exch def /x2 exch def /z1 exch def /y1 exch def /x1 exch def % F(t) /P0 cpt3d display-matrix project3d def /P1 [x1 y1 z1 1] cgfx3d 0 get transform3d display-matrix project3d def /w P0 2 get def /c P1 2 get w div 1 sub def /x0 P0 0 get w div def /x1 P1 0 get w div def /y0 P0 1 get w div def /y1 P1 1 get w div def x1 x0 c mul sub y1 y0 c mul sub [x3 y3 z3 1] cgfx3d 0 get transform3d aload pop cpt3d astore display-matrix project3d /P3 exch def /P2 [x2 y2 z2 1] cgfx3d 0 get transform3d display-matrix project3d def % We are assuming the display-matrix has images on { z = 0 } /w P3 2 get def /c P2 2 get w div 1 sub def /x3 P3 0 get w div def /x2 P2 0 get w div def /y3 P3 1 get w div def /y2 P2 1 get w div def x2 x3 c mul sub y2 y3 c mul sub x3 y3 curveto end } def % - are the next two used? -------------------------------- % dP dQ Q /dcurveto3d { 16 dict begin /z3 exch def /y3 exch def /x3 exch def /dz3 exch def /dy3 exch def /dx3 exch def /dz0 exch def /dy0 exch def /dx0 exch def /P0 cpt3d display-matrix project3d def /dP0 [dx0 dy0 dz0 0] cgfx3d 0 get transform3d display-matrix project3d def /w P0 3 get def % c = 1 - w'/w /c 1 dP0 3 get w div sub def P0 0 get w div c mul dP0 0 get w div add P0 1 get w div c mul dP0 1 get w div add [x3 y3 z3 1] cgfx3d 0 get transform3d aload pop cpt3d astore display-matrix project3d /P3 exch def /dP3 [dx3 dy3 dz3 0] cgfx3d 0 get transform3d display-matrix project3d def /w P3 3 get def /c 1 dP3 3 get w div add def P3 0 get w div c mul dP3 0 get w div sub P3 1 get w div c mul dP3 1 get w div sub P3 0 get w div P3 1 get w div curveto end } def % dP dQ Q /dcurveto { 8 dict begin /y3 exch def /x3 exch def /dy3 exch def /dx3 exch def /dy0 exch def /dx0 exch def currentpoint dy0 add exch dx0 add exch x3 dx3 sub y3 dy3 sub x3 y3 curveto end } def % - are the above two used? ---------------------------- /closepath3d { closepath lm3d aload pop cpt3d astore pop } def % - Conversion from 2d to 3D --------------------------- /2d-path-convert { [ { % x y [ 3 1 roll 0 {moveto3d}] } { % x y [ 3 1 roll 0 {lineto3d}] } { % x1 y1 x2 y2 x3 y3 [ 7 1 roll 0 5 1 roll 0 3 1 roll 0 {curveto3d} ] } { [ {closepath3d} ] } pathforall ] newpath { aload pop exec } forall } def % ----------------------------------------------- % For a simple currentpoint: /mkpath3dDict 8 dict def mkpath3dDict begin /pathcount { 0 {pop pop pop 1 exit} {pop pop pop 1 exit} {pop pop pop pop pop pop pop 1 exit} { pop 1 exit} pathforall } def /thereisacurrentpoint { pathcount 0 gt {true} {false} ifelse } def end % --------------------------------------------- % stack: t0 t1 N [parameters] /f /mkpath3d { load /f exch def /pars exch def 12 dict begin /N exch def /t1 exch def /t exch def /h t1 t sub N div def /h3 h 0.333333 mul def pars t f aload pop /velocity exch def /position exch def /p [ position aload pop 1 ] cgfx3d 0 get transform3d display-matrix project3d def /v [ velocity aload pop 0 ] cgfx3d 0 get transform3d display-matrix project3d def % p v = homogeneous position and velocity % p/p[3] v/p[3] - (v[3]/p[3])(p/p[3]) = inhomogeneous ones % = p/w v/w - c*p/w /w p 3 get def /c v 3 get w div def thereisacurrentpoint { p 0 get w div p 1 get w div lineto } { p 0 get w div p 1 get w div moveto } ifelse N { % x y = currentpoint p 0 get v 0 get p 0 get c mul sub h3 mul add w div p 1 get v 1 get p 1 get c mul sub h3 mul add w div /t t h add def pars t f aload pop /velocity exch def /position exch def /p [ position aload pop 1 ] cgfx3d 0 get transform3d display-matrix project3d def /v [ velocity aload pop 0 ] cgfx3d 0 get transform3d display-matrix project3d def /w p 3 get def /c v 3 get w div def p 0 get v 0 get p 0 get c mul sub h3 mul sub w div p 1 get v 1 get p 1 get c mul sub h3 mul sub w div p 0 get w div p 1 get w div curveto } repeat end % local dict } def % makes polygon out of control points /mkcontrolpath3d { load mkpath3dDict begin 1 dict begin /f exch def /pars exch def /N exch def /t1 exch def /t exch def /h t1 t sub N div def /h3 h 0.333333 mul def pars t f aload pop /velocity exch def /position exch def position aload pop thereisacurrentpoint { lineto3d } { moveto3d } ifelse N { % x y = currentpoint % currentpoint pixel pop position 0 get velocity 0 get % x dx/dt h3 mul add position 1 get velocity 1 get % y dy/dt h3 mul add position 2 get velocity 2 get % z dz/dt h3 mul add lineto3d /t t h add def pars t f aload pop /velocity exch def /position exch def position 0 get velocity 0 get h3 mul sub position 1 get velocity 1 get h3 mul sub position 2 get velocity 2 get h3 mul sub lineto3d position 0 get position 1 get position 2 get lineto3d } repeat end % local dict end % mkpath3d dict } def % ----------------------------------------------- % makes polygon from endpoints /mkpolypath3d { load /f exch def /pars exch def mkpath3dDict begin 1 dict begin /N exch def /t1 exch def /t exch def /h t1 t sub N div def /h3 h 0.333333 mul def pars t f aload pop /velocity exch def /position exch def position aload pop thereisacurrentpoint { lineto3d } { moveto3d } ifelse N { % x y = currentpoint % currentpoint pixel pop /t t h add def pars t f aload pop /velocity exch def /position exch def position 0 get position 1 get position 2 get lineto3d } repeat end % local dict end % mkpath3d dict } def % --------------------------------------------- % length width /plainarrow3d { 5 dict begin /shaftwidth exch def /arrowlength exch def /headwidth shaftwidth 3 mul def /headlength headwidth def /shaftlength arrowlength shaftwidth 2.5 mul sub def 0 0 0 moveto3d 0 shaftwidth 0.5 mul 0 lineto3d % shaftlength 0 0 rlineto3d shaftlength shaftwidth 0.5 mul 0 lineto3d arrowlength headlength sub headwidth 0.5 mul 0 lineto3d arrowlength 0 0 lineto3d arrowlength headlength sub headwidth -0.5 mul 0 lineto3d shaftlength shaftwidth -0.5 mul 0 lineto3d 0 shaftwidth -0.5 mul 0 lineto3d 0 0 0 lineto3d end } def % length width /plainarrowtail3d { 5 dict begin /shaftwidth exch def /arrowlength exch def 0 0 0 moveto3d 0 shaftwidth 0.5 mul 0 lineto3d arrowlength 0 0 rlineto3d 0 shaftwidth neg 0 rlineto3d arrowlength neg 0 0 rlineto3d 0 0 0 lineto3d end } def % --- shading ------------------------------------------------------------------ % all the shade input routines have as one argument a number between -1 and 1 % the result of a calculation of the dot-product of two unit vectors % linear interpolation: s [a b] -> a + (b-a)*t /lshade { % s [a b] exch 1 add 2 div % t in [0 1] % [a b] t exch aload 0 get % t a b a 4 1 roll % a t a b sub mul sub % a - t(a-b) } def % # in [-1 1] & coefficient array [A B C D]: % A etc = control points, A = min, D = max % 1 = facing towards, -1 = facing away from light % x -> (x+1)/2 = 0.5(x+1) takes [-1, 1] -> [0, 1] % evaluate by Horner's method /shade { % t [array] exch % [array] t 1 add 0.5 mul % a t now in [0 1] 1 1 index sub % a t s=1-t dup dup mul % a t s s^2 dup 2 index mul % a t s s^2 s^3 5 -1 roll aload pop % t s s^2 s^3 a0 a1 a2 a3=P0 7 index mul % t s s^2 s^3 a0 a1 a2 a3.t exch % t s s^2 s^3 a0 a1 a3.t a2 7 -1 roll % t s^2 s^3 a0 a1 a3.t a2 s mul 3 mul add % t s^2 s^3 a0 a1 a3.t+3.a2.s=P1 5 index mul % t s^2 s^3 a0 a1 P1.t exch % t s^2 s^3 a0 P1.t a1 5 -1 roll % t s^3 a0 P1.t a1 s^2 mul 3 mul add % t s^3 a0 P1.t+3.a1.s^2=P2 4 -1 roll mul % s^3 a0 P2.t 3 1 roll mul add % P2.t + a0.s^3=P3 } def % t y=[ y0 y1 ... yn ] /bernstein { % t y % constants y n t s=1-t % variables k C P dup length % t y n+1 1 sub % t y n 3 -1 roll 1 % y n t 1 1 index sub % y n t s % constants in place 1 % y n t s k 3 index 3 index mul % y n t s k C=nt 5 index 0 get % y n t s k C P=y0 5 index { % y n t s k C P % P -> s.P + C.y[k] % C -> C.t.(n-k)/(k+1) % k -> k+1 3 index mul % y n t s k C P.s 1 index % y n t s k C P.s C 7 index % y n t s k C P.s C y 4 index get mul add % y n t s k C P.s+C.y[k]=new P 3 1 roll % y n t s P* k C 5 index % y n t s P* k C n 2 index sub mul % y n t s P* k C.(n-k) 1 index 1 add div % y n t s P* k C.(n-k)/(k+1) 4 index mul % y n t s P* k C* 3 1 roll 1 add % y n t s C* P* k* 3 1 roll % y n t s k* C* P* } repeat 7 1 roll 6 { pop } repeat } def % shading: s in [-1 1] and y a Bernstein array B -> t -> B(t) /bshade { exch 1 add 2 div exch bernstein } def % --------------------------------------------------------------------------------- % input: [pars] /fcn s0 s1 t0 t1 ns nt % the fcn: [pars] s t -> f_{pars}(s, t) % output: a polygonal surface of faces [ normal-fcn triangle ] /mksurface { 16 dict begin /nt exch def /ns exch def /t1 exch def /t0 exch def /s1 exch def /s0 exch def /ds s1 s0 sub ns div def /dt t1 t0 sub nt div def /f exch cvx def /pars exch def /P [ /s s0 def ns 1 add { [ /t t0 def nt 1 add { pars s t f /t t dt add def } repeat ] /s s ds add def } repeat ] def % P[i][j] = f(s0 + i.ds, t0 + j.dt) [ 0 1 ns 1 sub { /i exch def 0 1 nt 1 sub { /j exch def % an array of triangles (i, j, 0) + (i, j, 1) % dividing the rectangles in two /P00 P i get j get def /P10 P i 1 add get j get def /P01 P i get j 1 add get def /P11 P i 1 add get j 1 add get def % normal /Q P10 P00 vector-sub P01 P00 vector-sub cross-product def /r Q vector-length def r 0 ne { [ [ Q aload pop Q P10 dot-product neg ] % array of pointers to three vertices [ P00 P10 P01 ] ] } if /Q P01 P11 vector-sub P10 P11 vector-sub cross-product def /r Q vector-length def r 0 ne { [ [ Q aload pop Q P01 dot-product neg ] % array of pointers to three vertices [ P10 P11 P01 ] ] } if } for } for ] end } def % an array of vertices % traversed according to right hand rule % output normalized /normal-function { 2 dict begin /a exch def /n a 1 get a 0 get vector-sub a 2 get a 1 get vector-sub cross-product def /r n 0 get dup mul n 1 get dup mul add n 2 get dup mul add sqrt def r 0 gt { /n [ n 0 get r div n 1 get r div n 2 get r div ] def [ n aload pop a 0 get n dot-product neg ] }{ [] } ifelse end } def % --- light ------------------------------------------------ % should be part of the graphics environment /set-light { /light-source exch def } def /get-virtual-light { light-source cgfx3d 1 get transform3d } def %%EndProlog gsave %lanindL2 START 20000505 /lanind 1 def /lantex [(G) (E) (S) (F) (I) (J) (M)] def /showde {0 lanind eq {show} {pop} ifelse} bind def /showen {1 lanind eq {show} {pop} ifelse} bind def /showes {3 lanind eq {show} {pop} ifelse} bind def /showfr {2 lanind eq {show} {pop} ifelse} bind def /showit {4 lanind eq {show} {pop} ifelse} bind def /showjp {5 lanind eq {show} {pop} ifelse} bind def /showm {6 lanind eq {show} {pop} ifelse} bind def /lanindg where {pop /lanind1 lanindg def /lanind2 lanindg def} {/lanind1 1 def /lanind2 1 def} ifelse /lanind lanind1 def %lanind1 1 lanind2 {/lanind exch def %output showpage %ps3d.inc gsave 72 90 translate 250 -7 moveto 6 /Times-Roman FS (DE421-7N) show 0 0 translate 0 0 moveto (XYZ) show 0.01 MM 0.01 MM scale 15 setlinewidth 0 0 moveto 5400 0 rlineto 0 4000 rlineto -5400 0 rlineto closepath stroke grestore gsave showpage 72 90 translate 18 18 scale 0 0 translate 0 setlinewidth 0 setgray newpath 2 2 moveto 1 0 rlineto 0 1 rlineto -1 0 rlineto closepath fill 1 0 0 setrgbcolor newpath 1 1 moveto 1 0 rlineto 0 1 rlineto -1 0 rlineto closepath stroke 1 0 0 setrgbcolor [0 0 5 1] set-eye [0 1 0] 30 rotate3d 4 /Times-Roman FS newpath 1 0 moveto (ABC) true charpath 2d-path-convert gsave 0.7 0 0.1 setrgbcolor fill grestore stroke %15 setlinewidth 0 1 0 setrgbcolor 0 0 0 moveto3d 10 0 0 rlineto3d 0 6 0 rlineto3d -10 0 0 rlineto3d closepath stroke newpath 0 0 1 setrgbcolor 1 1 0 moveto3d 1 0 0 rlineto3d 0 1 0 rlineto3d -1 0 0 rlineto3d closepath stroke /xd 0.6 def /yd 0.6 def /xf 0.5 def /yf 0.5 def /x0 xd 2 div def /y0 yd 2 div def 0 1 8 {/j exch def %j=0,8 0 1 8 {/i exch def %i=0,8 /ic i 0.1 mul def /jc j 0.1 mul def ic jc 0 setrgbcolor /x x0 i xd mul add def /y y0 j yd mul add def x y 0 moveto3d xf 0 0 rlineto3d 0 yf 0 rlineto3d xf neg 0 0 rlineto3d closepath fill } for %i=0,8 } for %j=0,8 showpage %%Trailer