Reflection, $\log \left[\right.$ reflection], and triangle lightness t^{*}

CIELAB lightness L^{*} is equal to triangle lightness t^{*} for grey colours.
For surface colours all reflections are normalized to mean grey.
The normalized reflections of white, grey and black are:

$$
R_{1 \mathrm{~W}}(\lambda)=5, R_{1 \mathrm{Z}}(\lambda)=1, R_{1 \mathrm{~N}}(\lambda)=1 / 5
$$

It is valid: $\log \left[R_{1 \mathrm{~W}}(\lambda)\right]=0,70 ; \log \left[R_{1 \mathrm{~N}}(\lambda)\right]=-0,70$ therefore: $\log \left[R_{1 \mathrm{~N}}(\lambda)\right]+\log \left[R_{1 \mathrm{~W}}(\lambda)\right]=0=\log \left[\mathrm{R}_{1 \mathrm{Z}}(\lambda)\right]$. [2]
For all reflections with $R_{1}(\lambda)=R(\lambda) / 0,20$ it is valid:

$$
\begin{equation*}
R_{\mathrm{N}}(\lambda)=0,04, R_{\mathrm{Z}}(\lambda)=0,20, R_{\mathrm{W}}(\lambda)=1,00 . \tag{3}
\end{equation*}
$$

For the figure case it is: $R_{\mathrm{N}}(\lambda)=0,071 ; R_{\mathrm{W}}(\lambda)=0,564$. In this case is the scene contrast: $C=\mathbf{0 , 5 6 4 : 0 , 0 7 1 = 8 : 1}$. Both CIELAB and triangle lightness are proportional to $\log \left[\mathrm{R}_{1}(\lambda)\right]$ for $R_{1}(\lambda)$ near 1,00 or $R(\lambda)$ near 0,20 , for example for the contrast $2: 1$.

