Reflection, log[reflection], and triangle lightness *t** CIELAB lightness *k** is equal to triangle lightness *t** for grey colours. For surface colours all reflections are normalized to mean grey. The normalized reflections of white, grey and black are:

$$R_{1W}(\lambda) = 5, R_{1Z}(\lambda) = 1, R_{1N}(\lambda) = 1/5.$$
 [1]

It is valid: $\log[R_{1W}(\lambda)] = 0.70$; $\log[R_{1N}(\lambda)] = -0.70$ therefore: $\log[R_{1N}(\lambda)] + \log[R_{1W}(\lambda)] = 0 = \log[R_{1Z}(\lambda)]$. [2] For all reflections with $R_1(\lambda) = R(\lambda)/0.20$ it is valid:

$$R_{\rm N}(\lambda) = 0.04, R_{\rm Z}(\lambda) = 0.20, R_{\rm W}(\lambda) = 1.00.$$
 [3]

For the figure case it is: $R_N(\lambda)=0.071$; $R_W(\lambda)=0.564$. In this case is the **scene contrast:** C = 0.564:0.071 = 8:1. Both CIELAB and triangle lightness are proportional to $log[R_1(\lambda)]$ for $R_1(\lambda)$ near 1.00 or $R(\lambda)$ near 0.20, for example for the contrast 2:1. MPRI = 3A