Farge, Fargesyn og elementærfarger i fargeinformasjonsteknologien

Forfatter: Prof. Dr. Klaus Richter

Særtrykk til utstillingen Farge og Fargesyn

ved avdeling for Lysteknikk ved Det Tekniske Universitet i Berlin Einsteinufer 19 10587 Berlin se http://www.li.tu-berlin.de

Denne publikasjonen (NS15.PDF) utgis i forskjellige versjoner for monitor-(S), offset-(L) og printer-(P)output og på tysk (G), engelsk (E), spansk (S), fransk (F), italiensk (I) og norsk (N), se

http://farbe.li.tu-berlin.de/color eller

http://130.149.60.45/~farbmetrik/color

Innholdsfortegnelse

01 Fargemetrikk	4
02 Farge og fargesyn	4
03 Fargers mangfold	5
04 Fargelegeme	9
05 Elementærfarger	10
06 Symmetrisk fargetonesirkel	13
07 Farger med maksimal kulør	16
08 Fargeegenskapene kulørthet og lyshet	17
09 Fargeegenskapene briljans og hvithet	18
10 Fargespektrum og elementærfarger	19
11 Apparat for blanding av spektralfarger og refleksjon	24
12 Fluorescens	26
13 Retrorefleksjon	28
14 Fargeblanding	29
15 Spektral stråling	39
16 Kontrast	44
17 CIE tristimulusverdier og fargemåling	49
18 Spesielle egenskaper ved fargesynet	55
19 Elementærfarger og fargeinformasjonsteknologi	64
20 Apparatuavhengig utskrift av elementærfarger	67
21 Affin fargereproduksjon	68
22 Litteratur	70
23 Takksigelser og TU-utstilling	71
22 Prøveplansjer	73

Merknader til prøveutskriftene

Prøveutskrifter Nr. 1 til 3 for fargegjengivelse (*PN13, PN23, PN33*) blir benyttet i lysteknikken og billedprosesseringsteknologien. Følgende visuelle evalueringer og fargemetriske spesifikasjoner er mulig mellom reell lyskilde og referanse lyskilde (D65, D50, P4000) eller mellom real og tilstrebet reproduksjon:

Fargegjengivelse: Fargeavstand (CIELAB ΔE^*_{ab}) mellom referanse og reproduksjon.

Elementærfargetoneposisjon: Lokalisering av de fire elementærfargetoner (CIELAB Δh_{ab}) til reell og tilstrebet reproduksjon.

Fargetoneskalering: Forskyvning av fargetonene ((CIELAB Δh_{ab}) i hver fargetone-sektor.

Metamere farger: Fargeavstand (CIELAB ΔE^*_{ab}) for reell lyskilde og referanselyskilde (D65, D50, P4000, A) eller for reell og ideell skanner.

Anmerkning: Metamere farger kan bare produseres med de to separasjonene *CMYK* og *CMY0*. Til dette brukes prøveplansjene PN23 og PN33 for utskriften i offsettrykk og PN29 og PN39 for utskriften i printere.

Fargepreferanse: Fargeavstand (CIELAB ΔE^*_{ab}) med tilstrebet forhøyelse av lysheten L^* og/eller kulørthet C^*_{ab} .

De internasjonale standardene ISO/IEC 15775 og ISO 9241-306 og dessuten standardseriene DIN 33866-1 til 5 og DIN 33872-1 til 6 benytter 5- og 16-delte *visuelle ekvidistante* fargerekker for inngangsdata og utskrift. Avgjørelsen om like stor avstand blir som regel foretatt visuelt. Den fargemetriske spesifikasjonen beregner fargeavstandene ifølge CIELAB (ISO 11644-4) mellom de reelle og tilstrebede utskriftsfargene.

Den nødvendige informasjon for å oppnå de tilstrebede utskriftsfargene inneholder en teknisk beskrivelse med tabell på de to indre omslagssidene.

1 Fargemetrikk

Fargemetrikken beskriver definisjon og måling av farger og deres visuelle fargeavstander. Fargemetrikken beror på en anvendelse av publikasjon 15 «Colorimetry» til den internasjonale belysningskommisjonen (CIE)

2 Farge og fargesyn

Beskrivelsen av fargegjengivelses-kvaliteten er bare mulig med nøyaktig kunnskap om de visuelle egenskapene til det menneskelige fargesyn. Derfor er det særlig viktig å utvide dette grunnlaget med visuell forskning. Med understøttelse av det tyske forskningsråd (DFG = der Deutschen Forschungsgemeinschaft) har K. Richter publisert to BAM-forskningsrapporter (1979, 1985) og tallrike andre publikasjoner til disse temaene.

Viktige delområder av *Farge og fargesyn* er psykologisk ordning av farger ved menneskelig visuell bearbeidelse. Den psykofysiske beskrivelse av det visuelle system beror både på fysikalske målinger av farger og på visuell bearbeidelse.

I de følgende avsnitt blir disse grunnleggende egenskapene innenfor området Farge og fargesyn anskueliggjort.

Figur 1: Delområder av Farge og fargesyn

Figur 1 viser viktige delområder av Farge og fargesyn. Disse blir i det følgende beskrevet ved hjelp av mange fargeillustrasjoner.

Figur 2: Fargegrafikk som anvendelse av visuelle egenskaper til fargesynet

Figur 2 viser området Fargegrafikk, som essensielt er basert på fargesynets visuelle egenskaper. Egenskapene til fargereproduksjonsprosessene til regneteknikken avgir grunnlaget for å optimere anvendelsene.

3 Fargenes mangfold

Alt vi ser har en farge. Farger utgjør elementene i våre visuelle fornemmelser. Noe helt annet enn disse fornemmelsene er de materialer og prosesser som produserer farger. Vi vil i det følgende ordne fargemangfoldet etter forskjellige visuelle kriterier. Denne ordningen vil lede oss til farger med like fargekjennetegn.

Ifølge *Judd* og *Wyszecki* (1975) kan en person med normalt fargesyn skjelne mellom ca. 10 millioner fargenyanser. Derfor er ordningen av fargemangfoldet etter egnede fargekjennetegn nødvendig.

Figur 3: Fargenes mangfold

Figur 3 viser eksempel på farger som ikke er ordnet etter noe system, men som i første omgang lar seg inndele i ukulørte og kulørte (akromatiske og kromatiske) farger.

Figur 4: Ukulørte og kulørte farger

I figur 4 er de to gruppene ukulørte (akromatiske) farger *(til venstre)* og kulørte (kromatiske) farger *(til høyre)* fremhevet i fargemangfoldet.

Akromatiske farger, mellomfarger	Kulørte farger, elementærfarger	Kulørte farger, apparatfarger
<i>Jem akromatiske Jarger:</i> N sort (fransk noir) D mørk grå Z mellomgrå H lys grå W hvit <i>to mellomfarger:</i> $C_e = G50B_e blå-grønn$ $M_e = B50R_e blå-rød$	fire elementærfarger (e): $R = R_e rød$ hverken gullig eller blålig $G = G_e grønn$ hverken gullig eller blålig $B = B_e blå$ hverken grønnlig eller rødlig $J = Y_e gul (fransk jaune)$ hverken grønnlig eller rødlig	seks apparatfarger (d=device): $C = C_d$ cyanblå (cyan) $M = M_d$ magentarød (magenta) $Y = Y_d$ gul $O = R_d$ orangerød (rød) $L = G_d$ løvgrønn (grønn) $V = B_d$ fioletblå (blå)
5-003130-L0 5-003130-F0		MN080-10

Tabell 1 Elementærfarger og apparatfarger i informasjonsteknikken

Tabell 1 viser definisjonen av elementærfargene (indeks e) og apparatfargene (indeks d=device) i informasjonsteknikken. Det finnes fire elementærfarger $RGBY_{\rm e}$ og seks apparatfarger $RGBCMY_{\rm d}$. I noen anvendelser blir de visuelle gjennomsnittsfargene Grønn-Blå $C_{\rm e}$ og Blå-Rød $M_{\rm e}$ føyd til de fire elementærfargene og det blir da seks farger (nederst til høyre i tabellen). Tabell 1 inneholder 5 akromatiske (ukulørte) farger NDZHW fra sort N over mellomgrå Z til hvit W. Alle andre farger er kromatiske (kulørte).

Betegnelsene *O*, *L* og *V* blir anvendt i mange av standarddokumentene, (*f. eks. ISO/IEC 15775, ISO/IEC 24705, ISO 9241-306, DIN 33866-1 til -5 og DIN 33872-1 til -6*). Betegnelsene *O*, *L* og *V* har den fordel at de er korte og svarer til det visuelle utseendet. De har den ulempe at de hittil ikke har fått gjennomslag i

praksis. Dessuten blir bokstaven *L* også brukt for luminans i alle standarder for lysteknologi, for eksempel i ISO/IEC/CIE 8589)

I det følgende vil derfor bokstavene R_d , G_d og B_d benyttes istedenfor betegnelsene O, L og V. I tabell 1 adskiller apparatfargene (*Indeks d*) Rød R_d , Grønn G_d og Blå B_d seg fra elementærfargene (*Indeks e*) Rød R_e , Grønn G_e og Blå B_e . For vilkårlige udefinerte røde, grønne og blå farger vil bokstavene R_- , G_- og B_- (*understrekstegn*) bli benyttet. Disse fargene stemmer da hverken nøyaktig overens med apparatfargene R_d , G_d og B_d eller med elementærfargene R_e , G_e og B_e . Den store fordelen med å innføre elementærfargene R_e , G_e og B_e er deres visuelle definisjon og deres apparatuavhengige egenskap ifølge CIE R1-47:2009 «Hue Angels of Elementary Colours».

For å spesifisere farger blir det i dag benyttet digitalteknikk i bearbeidelsen av bilder. Minimumstallet for ulike farger er 4096. Tre apparatfarger *(indeks d)* R_d (rød farge), G_d (grønn farge) og B_d (blå farge) blir benyttet for å produsere 16 fargetrinn for hver farge. For monitorer og fargeprojektorer leder additiv blanding av disse fargene til 4096 (=16x16x16) blandingsfarger.

De tre apparatfargene er vanligvis kodet i hexadesimalsystemet. Derfor er de 16 trinnene med desimalverdier 0 til 15 kodet med 0 til 9 og bokstavene A til F for verdiene 10 til 15.

For de forskjellige fargene viser figur 5 de tilsvarende spesifikasjonene i hexadesimalsystemet. De tre spesifikasjonene, for eksempel $00F_d$, står etter hverandre for rgb_d -fargedataene. Alt etter sitt visuelle utseende får de tre apparatfargene navnene $R_d=O$ (for orange-rød), $G_d=L$ (for løvgrønn) og $B_d=V$ (for violettblå).

Figur 5: *rgb*_d, *cmy*_d-fargekode og *rgb*_{de}, *cmy*_{de}-fargekode

I figur 5 *(til venstre)* har de akromatiske apparatfargene rgb_d (indeks d=device) tre like hex-sifre. Ved kulørte farger er minst to av de tre sifrene forskjellige.

Apparatfargedata rgb_d og cmy_d blir regnet om etter den såkalte 1-Minus-Relasjonen fra cmy_d - til rgb_d -data for utskrift fra apparatet. For eksempel blir rgb_d dataene $00F_d$ for apparatblå transformert til cmy_d -dataene FF0_d. Når disse to fargemetriske definisjonene benyttes i fargefilen, kan det oppstå like eller forskjellige utskriftsfarger. Med en fil ifølge DIN 33872-4 blir det testet om utskriftsfargen er lik for begge definisjonene, se http://www.ps.bam.de/Dg14/10L/L14g00NP.PDF

Figur 5 *(til høyre)* viser rgb_{de} - og cmy_{de} -kodene for elementærfarge-utskriften (indeks de = device to elementary data) ved hjelp av tre hex-sifre. Igjen blir rgb_{de} -data regnet om til cmy_{de} -data etter den såkalte 1-Minus-Relasjonen. For eksempel er blå (første rad, tredje farge) i figur 5 *(til høyre)* definert ved hex-tallet 06F_{de}.

Figur 5 *(til høyre)* viser for elementærblå B_e hex-tallene 09F_{de} for *sRGB*-monitorutskriften, 06F_{de} for standard-offsetutskrift og 04F_{de} for en laserprinterutskrift.

Apparatblå B_d (d=device) og elementærblå B_e ser forskjellig ut. B_d er i de tre utskriftene visuelt rødlig og B_e alltid hverken rødlig eller grønnlig.

For fargeskalaer som tilstreber visuelt like store fornemmelsestrinn, for eksempel en 16-trinns gråskala med visuelt like store trinn, blir tegnet * benyttet for fargekoordinatene. For eksempel brukes betegnelsen L^* for lyshet ($L^* = Lightness$). På tilsvarende måte kan man føye til tegnet * til rgb_e -data, altså kalle dem rgb_e^* . Interpretasjonen av denne skrivemåten betyr at for hex-dataserien rgb_e^* = 000, 111, 222, ..., EEE, FFF blir det produsert en gråserie med visuelt like store trinn.

Istedenfor hex-data kan det også benyttes tall mellom 0,0 og 1,0. For hex-tallet 5 får man da desimaltallet 5/F = 5/15 = 0,333. I informasjonsteknologien benyttes de 256 trinnene fra 00 via 9F og så fra A0 til FF istedenfor de 16 trinnene fra 0 via 9 og fra A til F. Også disse kan omregnes til desimaltall. For hex-tallet 55 får man da desimaltallet 0,3333 (=55/FF =85/255).

Ved utskrift av de fargemetrisk ekvivalente *rgb-* og *cmy0-*fargedata oppstår det i praksis mange problemer. Utskrift av skjermbildet av de ekvivalente *rgb-* og *cmy0-*fargedata gir ulike utskrifter med softwareproduktene *Adobe acrobat (alle versjoner fra og med 3 under Mac og Windows)* og like utskrifter med *Adobe FrameMaker (Versjon 8, Windows 2011)*. På *PostScript-*fargeprintere oppstår det for det meste forskjellige utskrifter, mens det på *PostScript-*sort/ hvit-printere for det meste kommer ut like utskrifter. Med filer ifølge DIN 33872-4 og -2 blir det testet om utskriftsfargene er like, se http://www.ps.bam.de/33872

4 Fargelegeme

Leonardo da Vinci (død 1519) førte fargemangfoldet tilbake til seks «enkle» farger, et akromatisk par (hvit-sort) og to kromatiske par (rød – grønn og gul – blå). Dobbeltkjeglen i figur 6 representerer en enkel modell av denne forestillingen. Den loddrette aksen tilsvarer de akromatiske fargene (hvit til sort) og den største omkretsen de rene kromatiske fargene.

Figur 6: Dobbeltkjegle som viser inndelingen i ukulørte og kulørte farger. Dobbeltkjeglen har seks «enkle» farger. I figur 6 betyr:

W hvit (= white)	$Y_{\rm e}$ gul	R _e rød
N sort (= noir)	B _e blå	G _e grønn

De «enkle» fargene er her de visuelle elementærfargene (indeks e).

Den tekniske komitéen ISO TC 159/WG2/SC4 *Ergonomics, Visual Display Requirements* anbefaler at de fire elementærfargene $RYGB_e$ blir produsert med de følgende fire rgb_e^* – inngangsdata: 100, 110, 010 og 001, se CIE R1-47. Det finnes minst tre måter å beregne rgb_{de} -data på: Av apparatprodusenten, ved hjelp av billedteknologi-software eller ved hjelp av en ramme-fil (frame file). Rammefil-metoden har vært benyttet for å endre alle rgb-data i figurene i denne publikasjonen i henhold til utskriftsapparatet. Rammefilen inneholder 729 (= 9x9x9) rgb-data og de tilhørende CIELAB-data (fargemålingsdata) til utskriftsapparatet.

Figur 7: RG_e- og YB_e-fargetonesnitt

Figur 7 viser vertikale snitt gjennom dobbeltkjeglen med noen mellomtrinn i planet rødt-grønt *(til venstre)* og gult-blått *(til høyre)*. Den akromatiske aksen sort-hvitt ligger i midten.

5 Elementærfargene

I hver fargetonesirkel finnes det fire kulørte farger som er særdeles enkle, visuelt sett, sammenlign tabell 1, side 6. I figur 6 kalte vi dem elementærfarger, og vi skjelner mellom en elementær gul, en elementær rød, en elementær blå og en elementær grønn farge.

I en serie fargetoner fra orange til gulgrønn er det lett å finne den elementærgule fargen som hverken er rødlig eller grønnlig. Den er en «hverken – eller» farge i motsetning til de rød-gule og grønn-gule «både – og» fargene i fargetonesirkelen. Elementærfargene har alle en slik «hverken – eller» karakter.

Figur 8: Apparat- og elementærfarge med kriteriet for elementær gul Ye

Figur 8 beskriver kriteriet for en bestemmelse av elementærfargen gul Y_e ut fra en fargetonerekke i området rundt gul. For rgb_d -inngangsdata (1 1 0)_d (data separert av tomme plasser) eller FF0_d blir vanligvis mellomfargen apparatgul Y_d produsert.

Den tilstrebede elementærfarge gul Y_{e} med den visuelle egenskapen hverken grønnlig eller rødlig blir produsert med rgb_{de} -inngangsdata (1 0,86 0)_{de} = FD0_{de}.

Figur 8 (*til høyre*) viser for elementærgul Y_e hex-tallene FD0_{de} for *sRGB*-monitorutskriften, (1 0,86 0)_{de} = FD0_{de} for standard-offsetutskrift og (1 0,79 0)_{de} = FC0_{de} for en laserprinter-utskrift.

Fargetoneforskjellen mellom apparatgul $Y_{\rm d}$ og elementærgul $Y_{\rm e}$ er størst for en fargelaserprinter.

Figur 9: Apparat- og elementærfarge med kriteriet for elementærfarge blå B_e

Figur 9 beskriver kriteriene for å bestemme elementærfargen blå $B_{\rm e}$ ut fra en fargetonerekke i området rundt blått. For $rgb_{\rm d}$ -inngangsdata (0 0 1)_d eller 00F_d oppstår gjennomsnittsfargen apparatblå $B_{\rm d}$.

Kriteriet for elementærblå som hverken grønnlig eller rødlig er ikke oppfylt (til venstre). rgb_{de} -inngangsdata (0 0,40 1)_{de} = 06F_{de} frembringer elementærblå Be med den visuelle egenskap hverken grønnlig eller rødlig i eksemplet med standard-offsettrykk (til høyre).

Den tilstrebede elementærfarge blå B_e med den visuelle egenskapen hverken grønnlig eller rødlig blir produsert med rgb_{de} -inngangsdata (0 0,60 1)_{de} = 09F_{de}. Figur 9 *(til høyre)* viser for elementærblå B_e hex-tallene 09F_{de} for *sRGB*-monitorutskriften, (0 0,40 1)de = 06F_{de} for standard-offsetutskrift og (0 0,27 1)_{de} = 04F_{de} for en laserprinter-utskrift. Fargetoneforskjellen mellom apparatblå B_d og elementærblå B_e er minst for en fargelaserprinter.

Figur 10: Apparat- og elementærfarge med kriteriet for elementærfarge grønn G_e

Figur 10 beskriver kriteriene for å bestemme elementærfargen grønn $G_{\rm e}$ ut fra en fargesirkel i området for grønt. For $rgb_{\rm d}$ -inngangsdata (0 1 0)_d eller 0F0_d oppstår den midtre fargen apparatgrønn $G_{\rm d}$.

Den tilstrebede elementærfarge grønn G_e med den visuelle egenskap som *hverken blålig eller gullig* blir produsert med rgb_{de} -inngangsdata (0 1 0,67) = 0FBde med sRGB-standardmonitor, (0 1 0,07)_{de} = 0F1_{de} med standard-offsettrykk og (0 0,87 0,13)_{de} = 0D2_{de} med en fargelaserprinter. Forskjellen i fargetone mellom apparatgrønn G_d og elementærgrønn G_e er minst i standard offsettrykk.

Figur 11: Apparat- og elementærfarge med kriteriet for elementærfarge rød R_e

Figur 11 beskriver kriteriene for å bestemme elementærfargen rød R_e ut fra en fargesirkel i området for rødt. For rgb_d -inngangsdata (1 0 0)_d eller F00_d oppstår den midtre fargen apparatrød R_d (*til venstre*).

Den tilstrebede elementærfarge rød R_e med den visuelle egenskapen som *hverken blålig eller gullig* blir produsert med rgb_{de} -inngangsdata (1 0 0,27) = F04_{de} med sRGB-standardmonitor, (1 0 0,20)_{de} = F03_{de} med standard-offsettrykk og (1 0 0,27)_{de} = F04_{de} med en fargelaserprinter. Forskjellen i fargetone mellom apparatrød R_d og elementærrød R_e er minst i standard offsettrykk.

K. Miescher (1948) bestemte elementærfargene med 28 observatører ut fra en 400-delt fargesirkel som var belyst med dagslys. Standardavviket utgjorde 4 trinn for R_e , Y_e og G_e (1% = 4 av 400 trinn) og 8 trinn for B_e (2%), se CIE R1-47. Fargetonesirkelen hadde stor kulørthet sammenlignet med CIE-testfargene nr. 9 til 12, sammenlign figur 52 på side 53.

6 Symmetrisk fargetonesirkel

På hver sin side av elementærfargeaksen R_e - G_e blir fargene i økende grad gulere eller blåere, og på hver sin side av aksen Y_e - B_e blir de rødere eller grønnere, når de fjerner seg fra det akromatiske sentrum.

Figur 12: Symmetrisk fargetonesirkel og navn på mellomliggende farger

Figur 12 viser den symmetriske fargetonesirkelen med elementærfargene rød – grønn og gul – blå rett overfor hverandre og i tillegg fargene som ligger mellom disse.

På de fleste språk (f.eks. tysk, engelsk, fransk, norsk) blir gul og blå nevnt først i sammensatte fargebetegnelser, f. eks. gulgrønn *YG* og gulrød *YR*, så vel som blågrønn *BG* og blårød *BR*. Denne skrivemåten blir brukt i figur 12 *(til venstre)*.

I figur 12 *(til høyre)* blir den matematiske synsvinkel med fortløpende betegnelser RY_e , YG_e , GB_e , BR_e foretrukket.

Også CIELAB-fargesystemet (ISO 11664-4/CIE S 014-4) benytter den matematiske synsvinkel for å betegne fargetone h_{ab} . Angivelse av vinkel begynner med vinkel 0 grader for elementærrød R_e og fortsetter med vinkel 90 grader for Y_e , 180 grader for G_e og 270 grader for B_e .

CIELAB-fargesystemet benytter 100 trinn mellom sort og hvit. Man legger 100 fargetonetrinn mellom to elementærfarger. Dette gir de angitte betegnelsene for mellomtrinnene (*Fig. 12 til høyre*). I informasjonsteknikken blir det krevet fargetoneutskrifter som forskyver seg visuelt 25%, 50% og 75% fra rød R_e mot gul Y_e . Utskriften på mange apparater produserer udefinerte utskriftfarger som ligger i et vidt område mellom R_e og Y_e .

En fargemetrisk informasjonsteknikk anbefaler å nå fargetonen som ligger visuelt midt i mellom med fargetonen $R50Y_{\rm e}$. For mange utskriftsapparater ligger utskriftsfargetonene for $R50Y_{\rm e}$ i et apparatavhengig vidt område $R50Y_{\rm e}$ (gult område). Tilsvarende gjelder for de andre mellomfargetonene $Y50G_{\rm e}$, $G50B_{\rm e}$ og $B50R_{\rm e}$.

Figur 13: 24-trinns apparat-fargetonesirkel i informasjonsteknologien

Apparatfargene RGB_d (*til venstre*) og de tilsvarende *rgb*-inngangsdata (1 0 0)_d, (0 1 0)_d og (0 0 1)_d er gitt. Midt i mellom disse ligger apparatfargetonene Y_d , $G50B_d$ og $B50R_d$ som har *rgb*-inngangsdata (1 1 0)_d, (0 1 1)_d og (1 0 1)_d.

For anvendelse i teknikk, design og kunst er området med de *lyse* fargene fra rødt over gult til grønt viktigere enn området for de *mørke* fargene fra grønt over blått til rødt. Dessuten er CIELAB-kulørtheten C^*_{ab} av overflatefarger dobbelt så stor i gulområdet som i blåområdet, se tabellen på indre bakre omslag og sammenlign C^*_{ab} for 48 fargetoner. Derfor er de *visuelle fargetone*- *forskjellene* for *lik* vinkeldifferans dobbelt så stor i gulområdet som i blåområdet. Begge grunner benyttes for å forstørre området fra rødt til grønt fra 120 grader til 180 grader og til å forminske området fra grønt over blått til rødt fra 240 grader til 180 grader.

Figur 14: 24-trinns elementær-fargetonesirkel i informasjonsteknologien

Figur 14 viser sammenhengen mellom elementærfargetonene $RYGB_e$ (*til ven-stre*) og rgb^*_e -inngangsdata (*til høyre*) i informasjonsteknologien for en 24trinns fargetonesirkel. Ifølge denne figuren skal man få frem elementærfargetonene $RYGB_e$ med rgb^*_e -inngangsdataene (1 0 0), (1 1 0), (0 1 0) og (0 0 1). Workflow'en Fil - utskrift må frembringe rgb^*_e -dataene for den tilstrebede utskrift av elementærfargetonene. I det enkleste tilfellet har apparatprodusenten lagt inn denne transformasjonen i sitt apparat. DIN 33872-5 inneholder testprøver i formatene *PDF* og *PS* (*PostScript*). Utskrifts-egenskapen Elementærfargetone blir vanligvis visuelt kontrollert. Den kan også spesifiseres fargemetrisk.

De mindre fargetoneforskjellene for overflatefarger i det mørke området fra grønt over blått til rødt tilsier en anbefaling om bare å benytte hvert annet fargetonetrinn i dette området.

Figur 15: 16-trinns elementær-fargetonesirkel i informasjonsteknologien

Figur 15 viser sammenhengen mellom elementærfargetonene $RYGB_e$ (*til ven-stre*) og rgb_e^* -inngangsdata (*til høyre*) i informasjonsteknologien for en 16-trinns fargetonesirkel. Elementærfargetonene $RYGB_e$ blir frembragt av rgb_e -inngangsdataene (1 0 0)_e, (1 1 0)_e, (0 1 0)_e og (0 0 1)_e. Fargetonen endrer seg med vinkelen, på samme måte som fargetonevinkelen h_{ab} i CIELAB-systemet (ISO 11564-4). Ifølge CIE R1-47 h_{ab} har elementær-fargetonene fargetonevinklene $h_{ab} = 26$, 92, 162 og 272 grader i CIELAB-fargesystemet. Spesielt rød R_e og grønn G_e ligger et stykke fra horisontalaksen i CIELAB-systemet.

7 Farger med maksimal kulør

I den fargerekken som fremkommer ved å benytte forskjellige konsentrasjoner av et fargestoff, og som fører fra hvitaktige farger over kromatiske til sortaktige farger, finnes det fornemmelsesmessig en farge som stikker seg ut med maksimal kulør.

For eksempel vil det være mulig i en fargerekke som fører fra hvit, hvitaktig rød, over rød, sortholdig rød til sort å bestemme den «rødeste røde farge» ved å bruke kriteriene «mer eller mindre kulørt», henholdsvis «hvitere eller sortere» enn de andre fargene i rekken.

Figur 16: Maksimal kulørthet

I figur 16 kan en lett bestemme den *mest kulørte* fargen. Kriteriene for en eksperimentell bestemmelse av farger med maksimal kulør i en konsentrasjonsrekke av et fargestoff er angitt med piler. I figur 16 betyr:

R_e rød	W hvit	N sort (= <i>noir</i>)
c mer kromatisk	w hvitere	<i>n</i> sortere
C* kulørthet	L^* lyshet	

I informasjonsteknologien blir som regel fargen med størst kulør (størst verdi av C^*_{ab} i CIELAB-fargesystemet) blandet med hvit W og med sort N. For blanding mellom den mest kulørte fargen R_e og hvit W blir CIE-kromatisitetsdifferansen gradvis mindre, for blanding av R_e og sort N holder den seg nesten konstant. Den additive fargeblandingen som er nødvendig for å få til dette på fargemonitoren og den tilnærmede subtraktive fargeblanding i offsettrykk, blir behandlet i avsnitt 20 på side 67.

Også i figur 16 skulle de to fargene R_{We} og R_{Ne} som visuelt ligger midt i mellom R_e og henholdsvis W og N, kunne frembringes. På samme måte som i figur 12 på side 13 ligger de som regel i et apparatavhengig vidt område (*gul-området*).

8 Fargekjennetegnene kulørthet og lyshet

Tre egenskaper brukes vanligvis for å kjennetegne en farge. De fleste fargesystemer velger fargetone som det første kjennetegnet, f. eks. det amerikanske *Munsell*-systemet, det tyske fargesystemet DIN 6164 og det svenske fargesystemet *NCS*. Disse fargesystemene adskiller seg i valget av de to andre egenskapene. Sammenligning av disse fargesystemene krever et ensartet koordinatsystem.

Sammenligningen finner sted i et snitt gjennom fargelegemet med konstant fargetone. Vi benytter oss av et system hvor abscissen representerer kulørtheten C^* og ordinaten lysheten L^* .

Figur 17: Lik kulørthet C* og lyshet L*

Figur 17 *(til venstre)* viser farger med samme fargetone og kulørthet (kalt Chroma) $C^* = 25$. Farger av samme kulørthet ligger på vertikale rekker parallellt med gråaksen. For den «rødeste» rød R_e kan man i fargemetrikken velge kulørthet $C^* = 100$.

Til høyre viser figur 17 en fargerekke med samme fargetone og samme lyshet $L^* = 50$. Farger med samme lyshet ligger på horisontale rekker som står vinkelrett på gråaksen. Fargemetrikken definerer lysheten $L^* = 100$ for hvit W. Derfor har rekken lysheten $L^* = 50$.

Fargerekker med samme fargetone og av henholdsvis konstant kulørthet og konstant lyshet ble først presentert i det amerikanske *Munsell*-systemet som fargeatlas for 40 forskjellige fargetoner. Fargerommet med størst utbredelse i fargemetrikken i dag, ISO 11564-4 og -5, definerer likeens koordinatene kulørthet C^* (Navn C^*_{ab} i CIELAB og C^*_{uv} i CIELUV) og lyshet L^* .

I fargesystemet *RAL-Design* danner fargeatlaset for 36 CIELAB-fargetoner $h_{ab} = 0$, 10 til 360 grader et gitter med kulørthetsavstandene $\Delta C^*_{ab} = 10$ og lyshetsavstandene $\Delta L^* = 10$.

9 Fargekjennetegnene briljans og hvithet

Det finnes flere enn de tre fargekjennetegnene fargetone, kulørthet og lyshet. I et plan med konstant fargetone står de videre fargekjennetegnene sorthet (motsatt til briljans) og hvithet (motsatt til fargedybde) i en lineær sammenheng med kulørthet og lyshet.

Fargekjennetegnene sorthet og briljans beskriver den samme egenskap, de endrer bare tallverdi i motsatte retninger, som f. eks. for lyshet og mørke. Hvithet og fargedybde telles likeledes i motsatte retninger. Sorthet er valgt som et viktig fargekjennetegn i det *svenske Natural Color System (NCS). NCS*-systemet benytter fargekjennetegnene fargetone, sorthet og kulørthet. Fargekjennetegnet lyshet i *Munsell*-systemet blir ikke benyttet.

Figur 18: Farger med samme sorthet N* og hvithet W*

Figur 18 viser farger med samme sorthet N^* (*til venstre*) med sorthet $N^* = 25$ og samme hvithet (*til høyre*) med hvithet $W^* = 25$. Istedenfor sorthet N^* kan man velge fargekjennetegnet briljans $I^* = 100 - N^*$. Istedenfor hvithet W^* kan man velge fargekjennetegnet fargedybde $D^* = 100 - W^*$ ($D^* =$ deepness).

Figur 19: Sorthet N^* , hvithet W^* og briljans I^*

Figur 19 viser til venstre sammenhengen mellom fargekjennetegnene sorthet N^* og hvithet W^* med fargekjennetegnene lyshet L^* og kulørthet C^* . Figur 19 viser sammenhengen ved hjelp av lineære ligninger.

Det er forventet at de lineære relasjonene henger sammen med de fysiologiske akromatiske og kromatiske signalene i figur 54 på side 56 og med kulørverdiene i figur 58 på side 64 *(nede til venstre).*

10 Fargespektrum og elementærfarger

10.1 Lysvalens og lyshet

Det dagslysspektrum en får ved å sende lys gjennom et glassprisme, og som ble inngående studert av *Newton* (d. 1727), har kontinuerlig stråling som inneholder alle bølgelengder fra kortbølget, rødligblå (fiolett, tilnærmet $R60B_e$) til og med langbølget, gulaktig-rød (tilnærmet $J90R_e$). Farget lys, fra ulike typer lyskilder, adskiller seg gjennom sin spektrale strålingsfordeling. Den spektrale fordelingen av lysstrålene som til slutt treffer øyet, endres underveis fra fargede overflater. Overflatefargene blir fremstilt med fargestoffer fra den kjemiske industrien.

Figur 20: Synlig spektralområde

Figur 20 viser skjematisk strålingsområdet for det synlige spektrum med bølgelengder mellom omtrent $\lambda = 380$ nm og $\lambda = 720$ nm (1 nm = 10⁻⁹ m). Strålingen utenfor grensene for det synlige spektralområdet kalles ultrafiolett UV og infrarødt IR. Figur 20 viser et spektrum slik det også kan fremstilles i diasplanet til et lysbildeapparat med et interferensfilter. Interferensfilteret har den egenskap at det innenfor diasbredden (36 mm) slipper gjennom synlig stråling mellom omtrent 380 nm og 720 nm.

Figur 21: Relativ spektral lysfølsomhet $Y(\lambda)$ og lyshet $L^*(\lambda)$

I figur 21 *(til venstre)* avtar spektrets lysvirkningsgrad $Y(\lambda)$ stadig mer jo lenger vekk man kommer fra den lyse gulgrønne midten. Dette skyldes at den spektrale lysvirkningsgraden $Y(\lambda) = V(\lambda) = y_q(\lambda)$ til øyet har sitt maksimum nær 555 nm, og at den synker til mindre enn 1% av sin maksimumsverdi i nærheten av 400 nm og 700 nm. Den spektrale lysvirkningsgrad eller relative spektrale følsomhet $y_q(\lambda)$, kjennetegner luminansvirkningen til spektralfargene av samme strålingsenergi i en fargeblanding. Tallverdien som blir angitt med den spektrale lysfølsomheten $y_q(\lambda)$, kan derfor også kalles luminansverdi eller luminansvalens.

I CIE 15 «Fargemetrikk» blir luminansfaktoren Y definert med normeringen Y_w = 100 for hvit W, se avsnitt 17 på side 49.

Forskjellig fra den lineære funksjonen $Y(\lambda)$ er den *ikke-lineære* funksjonen $L^*(\lambda)$ som beskriver hvordan lysheten av spektralfarger med samme strålingsenergi faktisk fortoner seg for øyet. Denne ikke-lineære funksjonen avtar ikkelineært på begge sider av spektrets midte. Denne funksjonen er tilnærmet kubisk i et grått og kvadratisk i et hvitt omfelt, sammenlign avsnitt 16 på side 44.

Figur 21 *(til høyre)* viser denne lyshetsfunksjonen $L^*(\lambda)$. $L^*(\lambda)$ avtar mye mindre mot spektrets ender enn $Y(\lambda)$ *(til venstre)*.

Note: CIE 15 definerer følgende relasjon mellom lyshet L^* og luminansfaktor *Y*: $L^* = 116 [Y/100]^{1/3} - 16 (Y>0,8).$

Tilnærminger er relasjonene:

 $L^* = 100 [Y/100]^{1/3}$ og $L^* = Y^{1/3}$,

som er benyttet for spektralfarger i figur 21.

10.2 Kulørverdi og kulørthet

I fargeblandingen blir spektret i tillegg til «lysverdier» også beskrevet med «kulørverdier».

Det synlige spektrum inneholder en kontinuerlig følge av fargetoner. I spektret kan en finne igjen tre elementærfarger. De spektrale elementærfargene ligger i nærheten av 475 nm for elementær blå $B_{\rm e}$, 503 nm for elementær grønn $G_{\rm e}$ og 574 nm for elementær gul $Y_{\rm e}$.

Elementær rød ligger utenfor spektret og fremkommer ved en bestemt blanding av spektralfargene med bølgelengdene $\lambda = 400$ nm og $\lambda = 700$ nm. Den purpurfargen en da får, kjennetegnes ved en bølgelengde som er kompensativ til lysarten E (samme strålingsenergi). For elementær rød R_e angis bølgelengden $\lambda_{e,E} =$ 494c nm som en bølgelengde med samme fargetone som R_e , se figur 50 på side 49.

Mellom slutt og begynnelse av spektret endrer gul-blå-kulørverdiene fortegn fra positivt til negativt. Elementærrødt R_e kan blandes av to spektralfarger fra den gulrøde og den blårøde enden av spektret.

Figur 22: RG-kulørverdier og YB-kulørverdier

Figur 22 *(til venstre)* viser kulørverdier for rød-grønn, eller rød-grønn-valensene i fargeblandingen, som funksjon av bølgelengden. Nullpunktene ved 475 nm og ved 574 nm bestemmer de spektrale elementærfargene blå B_e og gul Y_e .

Figur 22 *(til høyre)* viser kulørverdier for gul-blå, eller gul-blå-valensene i fargeblandingen, som funksjon av bølgelengde. Nullpunktet ved 503 nm bestemmer den spektrale elementærfargen grønn $G_{\rm e}$.

For spektralfarger med samme strålingsenergi danner luminansverdiene sammen med rød-grønn- og gul-blå-kulørverdiene tre tallverdier (en vektor) for hver bølgelengde λ , for eksempel med båndbredde 10 nm mellom 380 nm og

720 nm. I det tredimensjonale rom blir det definert et punkt med koordinatene rød-grønn-kulørverdi A, gul-blå-kulørverdi B og luminansverdi eller luminansfaktor *Y*. I figur 23 ligger punktene til alle spektralfargene på en tredimensjonal kurve.

Figur 23 viser de tredimensjonale fargeverdiene i fargerommet (*A*, *B*, *Y*) og projeksjonen ned i planet (*A*, *B*) som hvit kurve. Den tredimensjonale kurven skjærer planet (*B*, *Y*) ved 475 nm (elementær blå) og ved 574 nm (elementær gul). Planet (*A*, *Y*) blir gjennomskåret ved 503 nm (elementær grønn). Figur 23 inneholder den lineære sammenheng mellom de spektrale luminans- og kulørverdier $Y(\lambda)$, $A(\lambda)$ og $B(\lambda)$ og CIE standard spektralverdiene $x_q(\lambda)$, $y_q(\lambda)$ og $z_q(\lambda)$.

Forskjellen mellom kulørverdi (valens i fargeblandingen) og kulørthet svarer til forskjellen mellom luminansverdi og lyshet.

Figur 24: RG-kulørtheter og YB-kulørtheter

Figur 24 *(til venstre)* viser rød-grønn kulørthetene $a^*(\lambda)$. De beskriver hvordan de rødlige og grønnlige spektralfargene visuelt fremtrer for øyet. Nullpunktene

ligger nær 475 nm og 575 nm og bestemmer de spektrale elementærfargene blå $B_{\rm e}$ og gul $Y_{\rm e}$.

Figur 24 *(til høyre)* viser de gul-blå-kulørthetene $b^*(\lambda)$. De beskriver hvordan de gullige og blålige spektralfargene visuelt fremtrer for øyet. Nullpunktet ligger nær 503 nm og bestemmer den spektrale elementærfargen grønn $G_{\rm e}$.

For spektralfarger med samme strålingsenergi danner lyshet sammen med rødgrønn kulørthet og gul-blå kulørthet tre tallverdier (en vektor) for hver bølgelengde λ , for eksempel med båndbredde 10 nm mellom 380 nm og 720 nm. I det tredimensjonale rom blir det definert et punkt med koordinatene rød-grønnkulørthet a^* , gul-blå-kulørthet b^* og lyshet L^* for hver bølgelengde.

Det er nyttig å definere gruppebegrepet *Fargehet* (Farbheit) som omfatter begrepene lyshet, rød-grønn kulørthet, gul-blå kulørthet, hvithet, sorthet, briljans og andre visuelle fargekjennetegn.

Figur 25: Tredimensjonale fargeheter

Figur 25 viser tre fargeheter L^* , a^* , b^* i det tredimensjonale fargerommet (a^*, b^*, L^*) og projeksjonen inn i planet (a^*, b^*) som hvit kurve. Den tredimensjnale kurven skjærer planet (b^*, L^*) ved 475 nm (elementær blå B_e) og 574 nm (elementær gul Y_e). Planet (a^*, L^*) blir gjennomskåret ved 503 nm (elementær grønn G_e).

Projeksjonen av den tredimensjonale kurven inn i planet (a^*, b^*) er i figur 25 fremstilt ved en hvit kurve. Figur 25 inneholder den *ikke-lineære* sammenhengen mellom de spektrale lyshetene og kulørthetene $L^*(\lambda)$, $a^*(\lambda)$ og $b^*(\lambda)$ og CIE tristimulusverdiene $x_q(\lambda)$, $y_q(\lambda)$ og $z_q(\lambda)$.

11 Spektralt fargeblandingsapparat og refleksjon

Med et spektrofotometer kan man for hver bølgelengde måle den delen av det innfallende lys som blir reflektert fra en overflate. Sammenlignet med refleksjonen fra referanse-hvit får man en spektral refleksjonskurve med numeriske verdier som ligger mellom 0,0 og 1,0 for hver bølgelengde.

Figur 26: Spektrale refleksjonsfaktorer for de fire elementærfargene RYGB_e

Figur 26 viser spektrale refleksjonsfaktorer som man kan overføre til sjabloner med tilsvarende transmisjonsfaktorer. Med et spektralt fargeblandingsapparat kan så elementærfargene $RYGB_e$ produseres optisk.

Figur 27: Prinsipp for et spektralt fargeblandingsapparat og refleksjonsfaktor som sjablon

Figur 27 *(links)* viser prinsippet for et spektralt fargeblandingsapparat. Apparatet har to stråleganger som begge går ut fra en hvit Xenon-lyskilde.

I omfeltstrålegangen dannes det et ringformet hvitt omfelt på projeksjonsskjermen.

I innfeltstrålegangen dannes det et spektrum ved at lyset sendes gjennom et prisme. Dette spektret blir optisk blandet og projisert som et sirkulært innfelt på skjermen. Det hvite lyset i omfelt og innfelt er i dette tilfellet identisk.

Med hjelp av sjabloner, nøyaktig plassert i spektret, blir enkelte spektralområder delvis eller helt avblendet. De resterende deler av spektret blir optisk blandet. Forskjellige sjabloner fører til forskjellige innfeltfarger, f. eks. til CIE-testfarge nr. 9 (Elementærrød R_e ifølge CIE R1-47).

Figur 27 *(til høyre)* viser sjablonene for elementærfargene $RYGB_e$. Disse sjablonene ble fremstilt i overensstemmelse med refleksjonsfaktorene $R(\lambda)$ for de fire CIE-testfargene nr. 9 (Rød R_e)), nr. 10 (Gul Y_e), nr. 11 (Grønn G_e) og nr. 12 (Blå B_e). Ifølge CIE 13.3 blir disse CIE test-fargene og andre benyttet til spesifisering av fargegjengivelse av lyskilder. I tillegg er det tegnet inn en konstant refleksjonsfaktor $R(\lambda) = 0,6$, svarende til en lys grå farge.

12 Fluorescens

Fluorescens endrer absorbert kortbølget stråling til lys av lengre bølgelengde. Denne effekten blir brukt ved optisk bleking, og fører bl.a. til at klesvask og papir blir hvitere eller at farger blir selvlysende. Fluorescerende belegg benyttes også i lysstoffrør. Selvlysende eller fluorescerende farger fører til en vesentlig utvidelse av det normale fargerom for ikke-fluorescerende overflatefarger.

Figur 28: Overflatefarger og refleksjon og emisjon av en fluorescerende farge

Figur 28 viser de tre overflatefargene hvit W_d (I), rød R_d (II) og en fluorescerende rød R_{df} (III) (*til venstre*), dessuten refleksjon og emisjon fra en fluorescerende rødfarge R_{df} (*til høyre*). Fluorescerende røde farger sender ut mer langbølget (rødt) lys enn det som reflekteres fra en fullstendig hvit overflate. Summen av spektral refleksjon og emisjon blir ifølge figur 28 større enn 1,0 i det langbølgete røde spektralområdet. Derfor viser denne overflaten seg spesielt lysende rødt. Vi betegner den som lysfarge.

Figur 29: Fenomenet fluorescens med prinsipp spektralt fremstilt

Figur 29 viser fenomenet fluorescens *(til venstre)* og prinsippet for fluorescens *(til høyre)*. Spektret projiseres på en hvit flate (I), en normal rød overflate (II) og den fluorescerende røde overflaten (III), og viser seg meget forskjellig i de tre tilfellene. Endringen av spektrets utseende kan demonstreres direkte ved å projisere et spektrum på forskjelligfargede overflater. Spektret, fremstilt ved hjelp av et interferensfilter, projiseres på de tre fargeflatene I til III:

• Ved projeksjon på en hvit flate (I) viser spektret seg i den vante rekkefølgen fiolett v, blå $B_{\rm e}$, grønn $G_{\rm e}$, gul $Y_{\rm e}$ til rød *r (til venstre)*. Rekkefølgen er vist med bokstaver svarende til fargene i høyre del av figur 29.

• Projisert på en normal rød overflatefarge (II) viser spektret seg mørkt i området fiolett v til gult Y_e og reflekterer i rødområdet like mye som den hvite overflaten (*til venstre*). Bokstaven N (=*noir*) anviser at lyset blir absorbert i området fiolett v til gult Y_e og bokstaven r anviser refleksjon (*til høyre*).

• Projisert på en fluorescerende rød farge (III) viser spektret seg rødt r i hele spektralområdet fra fiolett *v* til rødt *r (til venstre)*. I spektralområdet fra fiolett *v* til gult Y_e blir det emittert lys med rød farge *r*. Bokstaven *r* for hele spektret symboliserer denne refleksjonsegenskapen (*til høyre*)

13 Retrorefleksjon

Retroreflekterende materialer viser seg som særlig lysende farger under spesielle belysnings- og iakttagelsesforhold. Fargen er et produkt av lyskilden, en akromatisk materialoverflate med spesielle geometriske refleksjonsegenskaper og et overliggende gjennomsiktig fargesjikt. Dette fargesjiktet kan en forestille seg som et fargefilter med egen spektral transmisjon.

Figur 30: Fenomenet retrorefleksjon med forklaring

Figur 30 viser hvordan retrorefleksjon ytrer seg *(til venstre)* og prinsippet for fenomenet *(til høyre)*.Spektret fremtrer meget forskjellig på en hvit overflate (I), en normal rød overflate (II) og en retroreflekterende rød overflate (III) (*til venstre*).

Forandringen av spektrets utseende kan man demonstrere ved projisering av et spekter på ulike flater. Spektret blir fremstilt ved hjelp av et interferensfilter. Spektret blir projisert på de tre typene fargede flater I til III.

• Beskrivelsen av spektret projisert på en hvit overflate (I) og en normal rød overflate (II) ble allerede beskrevet i figur 29.

• På en rød retroreflekterende overflate (III) er spektret nesten sort i området fra fiolett *v* til gult *Y*_e, mens det i det langbølgede røde området blir reflektert som fra den hvite overflaten *(til venstre)*. Bokstaven N (= noir) symboliserer absorpsjon i området fra fiolett *v* til gult *Y*_e, mens den *store bokstaven r* viser økningen i refleksjon *(til høyre)*. Den største refleksjonen fås når belysnings- og iakttagelsesretning stemmer overens.

14 Fargeblanding

14.1 Dikromatisk additiv fargeblanding

Den additive blandingen av to farger kaller *Miescher* en dikromatisk fargeblanding. Tilsvarende kalles blandingen av tre farger en trikromatisk fargeblanding. Blandingen av to kompensative farger som kan gi akromatiske farger, kalles etter *Miescher* (1961, 1965) en antikromatisk fargeblanding.

Farger av vilkårlig spektral sammensetning kan lages optisk ved hjelp av et spektralt fargeblandingsapparat, se figur 27 på side 26. Det er på samme måte mulig å lage *optimalfarger*, dvs. farger som representerer den teoretiske yttergrensen for overflatefarger. Blant optimalfargene er de *mest kromatiske*, f. eks. den rødeste rød, av stor betydning for billedteknologien, se avsnitt 19 på side 64.

Figur 31: Dikromatiske additive optimalfarger B_d og Y_d

Figur 31 viser den dikromatiske blandingen av hvit. Hvit W blir blandet additivt av to vilkårlige par av såkalte *kompensative* (eller komplementære) optimalfarger. I det følgende vil vi benytte en grønnlig gul, som vi som vanlig betegner med Y_d (Y = yellow, d = device) og en rødlig blå B_d i reproduksjonsprosessene.

Refleksjonskurven for optimalfargen blå B_d endrer seg brått fra 1,0 til 0,0 ved 490 nm, se figur 31 *(til venstre)*. Refleksjonskurven har verdien 1,0 mellom 380 nm og 490 nm og verdien 0,0 mellom 490 nm og 720 nm.

Refleksjonskurven for den komplementære optimalfargen gul Y_d har verdien 0,0 mellom 380 nm og 490 nm, et sprang fra verdien 0,0 til 1,0 ved 490 nm og verdien 1,0 mellom 490 nm og 720 nm, se figur 31 *(til høyre)*.

Den additive fargeblandingen av de to optimalfargene B_d og Y_d gir en akromatisk farge med en spektral refleksjonsfaktor $R(\lambda) = 1,0$ for alle bølgelengder. Denne fargen viser seg hvit.

I figur 31 er de to apparatfargene gul Y_d og blå B_d forskjellig fra de to elementærfargene Y_e og blå B_e .

Figur 32: Fire elementærfarger RYGB_e og seks apparatfarger RYGCBM_d

Figur 32 viser *(til venstre)* de fire elementærfargene rød R_e , gul Y_e , grønn G_e og blå B_e i en symmetrisk elementærfargesirkel.

Til høyre viser figur 32 de seks kulørte fargene $RYGCBM_d$ i en seksdelt fargetonesirkel, som danner grunnlaget for fargereproduksjon. Når disse skal ordnes i en symmetrisk seksdelt sirkel, vil gul Y_d se litt grønnere ut enn gul Y_e mens blå B_d er rødere i forhold til blå B_e .

Figur 33: Dikromatiske fargeverdier i fargemetrikken og digitalteknikken

Figur 33 viser *til venstre* fargeverdiene F i fargemetrikken og til høyre fargeverdiene D i digitaltknikken. I fargemetrikken benyttes 100 trinn, mens digitalteknikken benytter 255 trinn.

Figur 33 viser blandingsfarver mellom en dominant farge gul Y_d og den kompensative fargen B_d , hvit W_d , mellomgrå Z_d og en gul farge y_d (nedre marg).

Hvis man bruker 100% både av den dominant fargen Y_d og den kompensative fargen blå B_d , blir den akromatiske fargen hvit W_d med spektral refleksjonsfaktor lik 1,0 overalt. På den venstre siden av figuren gjelder altså: hvitverdi W =100, sortverdi N = 0 og kulørverdi C = 0. Blandingsfargen W_d er angitt nede til venstre.

Bruker en bare 25% av den dominante fargen Y_d og den kompensative fargen blå B_d , oppstår den akromatiske mellomgrå fargen Z. På det spektrale fargeblandingsapparatet kan man velge sjabloner slik at refleksjonskurvene bare har to sprang mellom 0,0 og 0,25. I den midtre del av figuren gjelder da for mellomgrå Z_d : Hvitverdi $W = B_d = 25$, sortverdi N = 75 og kulørverdi C = 0.

Når fargen Y_d dominerer i forhold til den kompensative fargen blå B_d , så oppstår det en kulørt farge med samme fargetone som den dominante fargen. I høyre del av figuren har man da for y_d : Hvitverdi $W = B_d = 15$, sortverdi $N = 100 - Y_d$ =50 og kulørverdi $C = Y_d - B_d = 35$.

Billedteknologien fører i økende grad til reproduksjon av ekvidistante fargerekker for fargekjennetegnene. For eksempel får man frem ekvidistante lyshetsrekker med ΔL^* = konstant i et hvitt omfelt når trinnene fastlegges ved å trekke kvadratroten av fargeverdiene. For eksempel gir luminansfaktorene Y med $Y = 1, 4, 9, 16, \dots, 81, 100$ de ekvidistante lyshetene $L^* = 10, 20, 30, \dots, 90, 100.$

Koordinatene til fargekjennetegnene er fargehetene F^* i fargemetrikken eller fargehetene D^* i digitalteknikken. Gruppebegrepet fargehet omfatter fargekjennetegnene lyshet, kulørthet, hvithet, sorthet, briljans og andre. Gruppebegrepet *fargeverdi* omfatter fargeverdiene luminansfaktor, hvitverdi, sortverdi, kulørverdi og andre. Det finnes en *ikke-lineær* (kvadratrot-) relasjon mellom de to gruppebegrepene, for eksempel mellom lyshet L^* og luminansfaktor *Y*.

Figur 34: Fargeheter i fargemetrikken og digitalteknikken

Figur 34 (*til venstre*) viser fargehetene $F^* = Y^*$ eller B^* mellom 0 og 10 i fargemetrikken. Det blir benyttet 10 trinn i *Munsell*-fargesystemet. Figur 34 (*til høyre*) viser fargehetene D^* mellom 0 og 15 i den digitale billedteknikken. 15 trinn benyttes i CEPT-standarden for videotekst (*Btx*).

14.2 Trikromatisk additiv fargeblanding

Hvitt W_d kan blandes additivt av tre optimalfarger, f.eks. rød R_d (eller orangerød O), grønn G_d (eller løvgrønn L) og blå B_d (eller fiolettblå V). *Miescher* kalte denne blandingen av tre grunnfarger for en trikromatisk blanding.

Figur 35: Trikromatisk additiv fargeblanding og elementærfargenes posisjon

Figur 35 (*til venstre*) viser den additive fargeblandingen med de tre grunnfargene rød R_d (eller orangerød O), grønn G_d (eller løvgrønn L) og blå B_d (eller fiolettblå V). Disse blander seg til de tre dikromatiske blandingsfargene gul Y_d , cyanblå C_d og magentarød M_d . Hvit W_d oppstår som en trikromatisk blandingsfarge av de tre grunnfargene.

Figur 35 *(til høyre)* viser posisjonen til de additive grunnfargene, de dikromatiske blandingsfargene CMY_d og den trikromatiske blandingsfargen W_d i forhold til de fire elementærfargene $RYGB_e$. Forskjellen mellom R_d og R_e og mellom G_d og G_e må tas i betraktning.

Figur 36: Trikromatisk additive optimalfarger

Figur 36 viser de tre optimalfargene rød R_d , grønn G_d og blå B_d som blandes additivt til hvit. Det blir teknisk sett benyttet en additiv blanding med forskjellige andeler av de tre grunnfargene rød R_d , grønn G_d og blå B_d .

I Figur 37 er fargeverdiene til apparat-grunnfargene rød R_d , grønn G_d og blå B_d ordnet etter størrelse, i eksempelet gjelder $R_d > G_d > B_d$.

Figur 37: Trikromatiske fargeverdier RGB_d i fargemetrikken og i digitalteknikken

Figur 37 viser *til venstre* fargeverdiene $F = R_d$, G_d og B_d mellom 0 og 100 i fargemetrikken og *til høyre* fargeverdiene $D = R_d$, G_d og B_d mellom 0 og 255 i digitalteknikken.

Sammenhengen med sortverdi N, hvitverdi W og kulørverdi C for fargene er angitt.

farge-egenskaper til den lavere og høyere fargemetrikken		type fargeblanding dikromatisk trikromatisk	
lavere farge- el	ller valensmetrikk	(for $Y_d \ge B_d$)	(for $R_d \ge G_d \ge B_d$)
hvitverdi	W	Bd	Bd
sortverdi	N	$100 - Y_{\rm d}$	$100 - R_{\rm d}$
kulørverdi	С	$Y_{\rm d} - B_{\rm d}$	$R_{\rm d} - B_{\rm d}$
høyere farge- e	eller fornemmelsesmetrik	$k (\text{for } Y^*_d \ge B^*_d)$	$(\text{for } R^*_d \ge G^*_d \ge B^*_d)$
hvithet	W*	B*d	B*d
sorthet	N^*	$100 - Y_{d}^{*}$	$100 - R_{d}^{*}$
kulørthet	<i>C</i> *	$Y^*_{\rm d} - B^*_{\rm d}$	$R^*_{\rm d} - B^*_{\rm d}$

5-003130-L0 5-003130-F0

MN480-10

Tabell 2: Type fargeblanding, fargeverdier og fargeheter i fargemetrikken

Tabell 2 viser to typer fargeblanding. Fremstillingen viser sammenhengen mellom fargekjennetegnene og fargeverdiene Y_d og B_d i den dikromatiske fargeblandingen med fargeverdiene R_d , G_d og B_d i den trikromatiske fargeblandingen.

Fargekjennetegnene i den høvere fargemetrikken benytter fargeheten (hvithet, sorthet, kulørthet). Fargeheten er i tabellen spesifisert med tegnet * (stjerne), for eksempel hvithet $W^* = B^*_{d}$.

Forkortelsene i figur 33 på side 31 og i figur 37 på side 34 og i tabell 2 betyr:

Figur 33 på side 31 for $Y_d \ge B_d$: $Y_{\rm d}$ dominant farge $B_{\rm d}$ kompensativ farge W hvit Z mellomgrå y_{d} mellomgrå Figur 37 på side 34 for $R_d \ge G_d \ge B_d$ $G_{\rm d}$ grønn $R_{\rm d}$ rød $(Y..R)_{d}$ gulrød $B_{\rm d}$ blå

I tabell 2 står fargeverdiene til den dominante fargen Y_d og den kompensative fargen blå B_d , henholdsvis til de tre grunnfargene rød R_d , grønn G_d og blå B_d , i en enkel sammenheng med de Ostwaldske valensmetriske fargekjennetegn hvitandel w, sortandel n og kulørandel c.

En har (se også figur 33 på side 31 og figur 37 på side 34): w hvitandel = hvitverdi / 100 = W / 100 n sortandel = sortverdi / 100 = N / 100 c kulørandel = kulørverdi / 100 = C / 100

Ut fra de tre fargeverdiene RGB_d i fargemetrikken eller digitalteknikken kan man beregne hvitverdien *W*, sortverdien *N* og kulørverdien *C*. På grunn av den ikke-lineære sammenhengen mellom fargeverdi og fargehet er de to kvotientene hvitverdi / sortverdi og hvithet / sorthet forskjellige.

Figur 38: Fargehetene RGB*_d i fargemetrikken og i digitalteknikken

Figur 38 viser fargehetene R^*_{d} , G^*_{d} og B^*_{d} mellom 0 og 10 i fargemetrikken *(til venstre)* og mellom 0 og 15 i den digitale billedteknikken *(til høyre)*. Sammenhengen med sortheten N^* , hvitheten W^* , og kulørtheten C^* til fargene er angitt.

Merknad: I CIELAB-systemet varierer lysheten L^* og kulørtheten C^* mellom 0 og 100 istedenfor mellom 0 og 10, som for eksempel i *Munsell*-systemet.

Den mest kjente tekniske anvendelse av den additive fargeblandingen er mottakeren for fargefjernsyn og skjermbildet på en datamaskin. Her blir fargene på skjermen blandet ved at små rasterpunkter med fargene rød R_d , grønn G_d og blå B_d ligger så tett ved siden av hverandre at det ser ut som de smelter sammen. Luminansen (lystettheten) av disse punktene styres av signaler fra fjernsynssenderen eller fra software i datamaskinen. På en standard fjernsynsmottaker finnes det minst 1,2 millioner slike lyspunkter. Punktene kan ved normale synsbetingelser ikke sees atskilt av en iakttager i en avstand på 3 m. Det oppstår dermed en additiv rasterblanding av fargene.
14.3 Trikromatisk subtraktiv fargeblanding

Tre egnede fargefiltre plassert etter hverandre i *en og samme hvite* lysstråle fører til sort (i en hvit omgivelse) dersom tilnærmet alt lys blir absorbert. I motsetning til den additive fargeblandingen som krever at tre adskilte lys overlagres (adderes), blir det nå satt filtre inn etter hverandre i kun én lysstråle.

Figur 39: Trikromatisk subtraktiv fargeblanding og posisjonen til elementærfargene

Figur 39 (til venstre) viser den subtraktive fargeblandingen med de tre grunnfargene cyanblå C_d , magentarød M_d og gul Y_d og de tre dikromatiske blandingsfargene rød R_d , grønn G_d og blå B_d . Sort N_d (= *noir*) er den trikromatiske blandingsfargen av de tre grunnfargene. Best egnet for subtraktiv fargeblanding er tre spesielle filtre med spektrale transmisjonskurver som svarer til optimalfarvene cyanblå C_d magentarød M_d og gul Y_d , se figur 40 på side 38.

Figur 39 (*til høyre*) viser posisjonen til de subtraktive grunnfargene CMY_d , de dikromatiske blandingsfargene RGB_d og den trikromatiske blandingsfargen N_d . De relative posisjonene til disse fargene er sammenlignet med posisjonene til de fire elementærfargene $RYGB_e$. Det er en viktig forskjell mellom R_e og R_d eller M_d . I trykketeknikken blir M_d ofte betegnet med navnet rød istedenfor magentarød. Videre finnes det en forskjell mellom B_e og B_d eller C_d , som i trykketeknikken ofte kalles *blå* istedenfor *cyanblå*.

Figur 40: Trikromatiske subtraktive optimalfarger

Figur 40 viser de spektrale refleksjonsfaktorene $R(\lambda)$ (eller transmisjonsfaktorer $T(\lambda)$ for filtre) som egner seg spesielt godt til subtraktiv fargeblanding: Optimalfargen gul $Y_d \mod R(\lambda) = 1$ fra bølgelengden 490 nm, optimalfargen magentarød $M_d \mod R(\lambda) = 1$ frem til 490 nm og fra 590 nm, og til slutt optimalfargen cyanblå $C_d \mod R(\lambda) = 1$ frem til bølgelengden 590 nm.

Figur 41: Fargeverdier CMY_d i fargemetrikken og digitalteknikken

Figur 41 *(til venstre)* viser hvordan fargeverdiene F normeres mellom 0 og 100 i fargemetrikken. Figur 41 *(til høyre)* viser hvordan fargeverdiene D normeres mellom 0 og 255 i den digitale billedteknikken.

Det er vist en mulighet for å spesifisere blandingsfargene ut fra de tre standardtrykkfargene cyanblå C_d , magentarød M_d og gul Y_d . Hvis gul Y_d og magentarød M_d dominerer i forhold til cyanblå C_d , vil blandingen av gul Y_d og magentarød M_d som regel føre til rød R_d . Siden gul dominerer, må fargetonen i blandingen være en gulrød farge $(R. Y)_d$.

Figur 42: Fargeheter CMY*_d i fargemetrikken og i digitalteknikken

Figur 42 viser *til venstre* fargehetene F^* i fargemetrikken og *til høyre* fargehetene D^* i digitalteknikken for en trikromatisk subtraktiv fargeblanding.

Den mest kjente tekniske anvendelsen av den subtraktive fargeblandingen er fargefotografiet. I en negativfilm er det tre fargesjikt som ligger over hverandre: cyanblå C_d , magentarød M_d og gul Y_d . Sjiktenes transmisjonsfaktorer blir kontrollert av filmens belysning og av fremkallingsprosessen.

I standard flerfargetrykk benytter en seg av både additive og subtraktive fargeblandinger. Ved flerfargetrykk opptrer additiv fargeblanding når fargene blir trykket ved siden av hverandre, mens subtraktiv fargeblanding opptrer når transparente trykkfilmsjikt trykkes over hverandre. Man taler ved trykking også om autotypisk blanding.

15 Spektral stråling

Farger som ser like ut, kan ha vidt forskjellige spektralfordelinger. Den moderne fargemetrikken gjør det mulig å beregne slike metamere (eller betinget like) farger med numeriske metoder. Det forutsettes da at det tas hensyn til belysningen.

Figur 43: Refleksjonskurver for to metamere farger

Figur 43 viser spektralfordelingen til CIE- testfarge nr. 11 (grønn) ifølge CIE 13.3 og en kasseformet refleksjonskurve for en metamer farge som for en person med normalt fargesyn vil være lik CIE-testfargen når begge belyses med dagslys D65. Vanligvis forsøker en å unngå metamere farger på forskjellige deler av et industriprodukt. Grunnen er at metamere farger bare ser like ut under en bestemt belysning. Endres belysningen f. eks. fra dagslys til glødelampelys, vil det oppstå fargeforskjeller. Metamere fargepar ser ikke lenger like ut.

De tre inntegnede størrelsene *n*, *c* og *w* i figur 43 er de *Ostwaldske* fargekoordinatene *relativ* sortverdi, *relativ* kulørverdi og *relativ* hvitverdi. For disse gjelder *Ostwald*-ligningen: n + c + w = 1.

De to bølgelengdegrensene $\lambda_1 = 480 \text{ nm og } \lambda_2 = 580 \text{ nm som er kompensative}$ med hensyn til dagslys D65, tilhører en optimalfarge med elementærfargetonen grønn G_{e} . Denne optimalfargen har den største kulørverdien C_{AB} og danner ifølge *Ostwald* en *fargehalvdel*.

Det finnes mange dikromatiske komplementære farger som blandes til hvit, for eksempel blå B_d i figur 36 på side 34 og gul Y_d i figur 40 på side 38. På samme måte blander grønn G_d og mangentarød M_d , såvel som rød R_d og cyanblå C_d i begge disse figurene seg til hvit. I tillegg finnes det spesielle dikromatiske farger med kompensative bølgelengdegrenser λ_1 und λ_2 , som ifølge *Ostwald* danner en "fargehalvdel". For eksempel gjelder det fargeparet grønn - magentarød med tilnærmede bølgelengdegrenser (λ_1, λ_2) = (475nm, 575nm), blå - gul med bølgelengdegrenser (λ_1, λ_2) = (495nm, 700nm) og cyanblå - rød med bølgelengdegrenser (λ_1, λ_2) = (400nm, 565nm). Disse bølgelengdegrensene ligger i standard-kromatisitetsdiagrammet på rette linjer gjennom det akromatiske punktet E (eller tilnærmet D65), se figur 50 på side 49 (*til høyre*).

I Figur 43 gir de tilsvarende lineære rgb_e – fargeverdier for n=0,73 og w=0,08: $rgb_e = (w, (1-n), w) = (0,08 \ 0,27 \ 0,08)$ De tilsvarende *ikke-lineære (visuelle) rgb**_e-fargeverdier gir *(med kvadratrot-relasjonen for hvitt omfelt):*

 $rgb_{e}^{*} = (w^{1/2}, (1-n)^{1/2}, w^{1/2}) = (0,28 \ 0,52 \ 0,28)$

For reproduksjon av CIE-testfarge nr. 11 i fargetrykk eller på et fargedisplay må rgb_{de} – fargeverdiene (de = device to elementary hue) beregnes, og man får da følgende verdier:

 $rgb_{de} = (w, (1-n), w+0, 20w) = (0,08 \ 0,27 \ 0,10)$

Ifølge Figur 10 på side 12 må *b*-verdien forhøyes med 20% (= 3/F% = 3/15%) fra 0,08 til 0,10 for å fremstille elementærfargen G_e .

Alle de beregningene som er vist her, blir automatisk utført av programvaren for printutskriften. Programvaren benytter måleverdier fra 729 (= 9x9x9) farger til styring av utskriften på utskriftsapparatet.

Figur 44: To metamere testfarger, scannersignaler og fargegjengivelse

Figur 44 (oppe til høyre) viser to metamere testfarger som er scannet av en laserscanner og en bredbåndscanner. Scanner-signalene blir som regel justert opp mot det hvite papiret og får verdiene r=g=b=1.

Avhengig av scanner-typen gir de to fargene nr. 1 og 2 i figur 44 *(oppe til ven-stre)* som regel forskjellige *rgb*-data. Likevel ser de to fargene like ut under standard-lyskilde D65, og de har de samme CIE-XYZ-data.

Rgb-scannerverdiene blir som regel interpretert i *sRGB*-fargerommet ifølge IEC 61966-2-1 og regnet om til CIE-*XYZ*-data og fargeavstander ΔE^* . For en ideell scanner som har bredbånd-følsomhetene til CIE-tristimulus-verdiene, er de to *rgb*-signalene like. Maxima eller minima til refleksjonsfaktorene og reale scanner-spektralverdier bestemmer forskjellene i *rgb*-verdier. I figur 44 (*nede til høyre*) ligger fargeavstandene ΔE^* mellom de to metamere fargeprøvene 1 og 2 i området fra 0 til 10.

I det ideelle tilfellet har fargegjengivelsesindeksen R_i ifølge CIE 13.3 verdien 100. Den avtar i overensstemmelse med formelen $R_i = 100 - 4,6\Delta E^*$. Den har for eksempel verdien $R_i = 86$ (=100-4,6 · 3) for fargeavstanden $\Delta E^* = 3$. For de to fargeprøvene finnes det fargeavstander ΔE^*_{ab} mellom scannerdata med ideelle CIE-følsomheter og de reelle laserbånd- eller bredbånds-følsomhetene. Det oppstår to fargegjengivelsesindekser R_i for prøve nr. 1 og 2.

I offsettrykk og med fargeprintere kan akromatiske farger trykkes enten bare med den akromatiske fargen sort N_d eller bare med de tre kulørte fargene cyanblå C_d , magentarød M_d og gul Y_d (spesielt ved fargebilder). De akromatiske fargene som bare er trykket med sort N_d , har i stor grad konstant refleksjonskurve. De akromatiske fargene som bare trykkes av CMY_d , har som regel inntil tre maxima og minima, se figur 44 (opp til venstre).

Test- og metamere farger for CIE-standardlyskildene D65 og A og for CIE-lyskildene D50 og P4000 er trykt som testplansje nr 1 og 3 i tillegget i format A4landskap. De spektrale refleksjonsfaktorene for fargemønstrene i de tre testplansjene er gjort tilgjengelig. *rgb*-data er angitt og CIE-data for de seks lyskildene D65, D50, P40, A, C, E er beregnet. Fargemønstrene baserer seg på den 16-delte elementær-fargetonesirkelen til det *relative elementærfargesystemet RECS*, se DIN 33872-1 til 6.

CIE R1-47 definerer elementær-fargetonevinkelen for CIE standardlyskilde D65. Elementærgul Y_e og elementær blå B_e har fargevinkel 92 og 272 grader. For CIE standardlyskilde A forskyver elementær-fargetonevinkelen seg fra 92 og 272 grader til omtrent 82 og 262 grader i CIELAB (for D65 og A). De nøyaktige vinklene er ikke kjent. Derfor viser elementær-fargetonene under D65 seg ikke lenger som elementær-fargetoner under A. For eksempel viser elementærblå B_e under D65 seg som rødlig under CIE standardlyskilde A. På tilsvarende måte viser elementærgul Y_e seg som grønnlig under standardlyskilde A. I fremtiden kan det være at CIE fastlegger elementær-fargetonevinklene med de ulike CIE-lyskildene.

Hvis de akromatiske fargene i offsettrykk eller med fargeprintere bare trykkes med de tre kulørte fargene *CMY* istedenfor med *N*, så trengs det 3 ganger så høye materialressurser. Hvis akromatiske farger bare trykkes med *CMY*, så blir trykkeprisen 6 ganger så høy. Prisen for trykkfargene *CMY* er som regel dobbelt så høy som for *N*. I tillegg leverer scannere for *CMY*-trykk på grunn av de mange maxima og minima i refleksjonskurvene ofte fargeforskjeller på opp til $\Delta E^* = 10$ for (metamere) farger som ser like ut, se figur 44 (*nede til høyre*).

I tillegget benytter testplansjene nr. 2 og nr. 3 (*PN2311L* og *PN3311L*) begge trykketeknologiene for å trykke de akromatiske fargene. Offsettrykket produserer metamere farger for de fire CIE-lyskildene D65, D50, P40 og A. I tillegg finnes det metamere farger for en 8-trinns fargetonesirkel med halvparten av maksimum CIELAB-kulørthet C^*_{ab} sammenlignet med maximum kulørthet for offsettrykk.

Figur 45: Relativ spektral strålingsfordeling

Figur 45 viser den relative spektrale strålingsfordelingen $S(\lambda)$ til et trebånds lysstoffrør med høyt lysutbytte (energisparelampe) og en (hypotetisk) sortstråler med fargetemperatur 4000K etter *Plancks (P)* strålingslov. Begge belysninger ser like hvite ut til tross for ulik spektral stråling.

Belyses de kulørte testfargene med disse metamere lyskildene, vil testfargene se forskjellige ut. Man taler om forskjellig fargegjengivelsesevne, se CIE 13.3 og DIN 6169 «Farbwiedergabe». De to metamere fargene som er vist i figur 43 og 44 på side 41 ser like ut under dagslys, men ser meget forskjellig ut under de to belysningene som er fremstilt i figur 45.

De to testplansjene nr. 1 og 3 i tillegget tillater både en *visuell vurdering* som en *fargemetrisk spesifisering av fargegjengivelses-egenskapene* til *LED*-lamper og *fargereproduksjons-egenskapene* i fargeinformasjonsteknologien. Testplansjene bygger på det *Relative Elementærfargesystemet RECS*, se DIN 33872-1 til 6.

Testplansje nr. 1 inneholder 16-trinns elementær-fargetonesirkel ifølge DIN 33872-5 såvel som en 8-delt elementær-fargetonesirkel med halv CIELAB-kulørthet. Forsiden i dette heftet viser de 24 fargene i begge elementær-fargetonesirklene ordnet i en sirkel istedenfor horisontalt ordnet.

16 Kontrast

Kontrastfenomenene var allerede kjent av *Leonardo da Vinci* og er inngående beskrevet av *Goethe* (1749-1832). Kontrast er et viktig uttrykksmiddel i kunst, kunsthåndverk og design. Kontrast skyldes at forskjellige deler av synsfeltet påvirker hverandre gjensidig.

16.1 Akromatisk kontrast

Lysheten til et innfelt som sees vekselvis i et lysere og et mørkere omfelt, forskyves i motsatt retning av omfeltets lyshet. For eksempel er lysheten til trinnene i fire *fysikalsk like grårekker* avhengig av lysheten i omfeltet. Uten et lyst referansefelt kan det ikke oppstå grått eller sort.

Figur 46 viser hvordan lysheten endrer seg når fire fysikalsk identiske grårekker med ekvidistante trinn plasseres i fire forskjellige omgivelser med ulik lyshet. Et ekstra kvadrat viser overensstemmelsen i lyshet mellom prøve og omfelt.

 RGB_{d}^{*} -koden skal antyde at det dreier seg om en nitrinns visuell ekvidistant grårekke i en mellomgrå omgivelse. Grårekken har CIELAB-lyshetene $L^{*} = 15$, 25, 35,, 95. I et hvitt omfelt ser fargemønstrene *mørkere* ut og i et sort omfelt *lysere* ut enn i et mellomgrått omfelt (Z_{d} = mellomgrå, sees i figuren bare oppe og nede som striper).

Ifølge *Miescher* (1961) vil man kunne få en ekvidistant lyshetsskalering L^* i 100 deler med hvitt, mellomgrått og sort omfelt, dersom følgende formler gjelder for luminansverdien *Y* for de akromatiske fargene:

Kontrast

• hvitt omfelt: $L^*_{W} = 100 (Y_W / 100)^{1/2}$

For et mellomgrått trinn med $L_{W}^{*} = 50$ får man en luminansverdi på $Y_{W} = 25$ etter denne formelen.

• mellomgrått omfelt: $L_{Z}^{*} = 100 (Y_{Z} / 100)^{1/2,4}$

For et mellomgrått trinn med $L_{Z}^{*} = 50$ får man en luminansverdi på $Y_{Z} = 19$ etter denne formelen.

• sort omfelt: $L_{N}^{*} = 100 (Y_{N} / 100)^{1/3,0}$

For et mellomgrått trinn med $L_{N}^{*} = 50$ får man en luminansverdi på $Y_{N} = 12,5$ etter denne formelen.

I et mellomgrått omfelt har det mellomgrå trinnet med $Y_Z = 19$ i originalen lysheten $L^*_Z = 50$. Etter formelen ovenfor har $Y_W = 19$ i et hvitt omfelt lysheten $L^*_W = 44$. I et sort omfelt har $Y_N = 19$ lysheten $L^*_N = 58$.

Formlene for gråskalering i forskjellige omfelt er bare et første holdepunkt for beskrivelse av kontrast, som skyldes ulike innflytelser fra synsfeltene.

Med stigende luminans øker skjelneevnen for de enkelte gråtrinnene noe. Med stigende luminans ser hvit mer og mer hvit ut og sort mer og mer sort ut. Dette innebærer en økning i fargeforskjellen mellom hvit og sort. Hvis belysningsstyrken av grårekken økes fra ca. 500 lux til 5000 lux, så øker den synlige forskjellen mellom trinnene med ca. 20%. Effekten er liten i forhold til endringen av belysningsstyrken som er øket med en faktor på 10 (1000%).

Figur 46 inneholder 3 enkeltfigurer med forskjellig feltstørrelse av innfeltene sammenlignet med omfeltet. De største kontrasteffektene oppstår ved et innfelt med synsfeltstørrelse på tilnærmet en grad (1°) når omfeltet er minst 10 ganger større (>10°).

16.2 Kulørkontrast

Fargen i et kulørt omfelt forskyver fargen i innfeltet med hensyn på alle fargekjennetegn i motsatt retning.

Figur 47: Kulørkontrast: Omfelt og feltstørrelse

Figur 47 viser tre fysikalsk identiske kulørrekker med tilnærmet like store trinn som vises i omfeltene mellomgrå Z_d , rød R_d og grønn G_d . I figur 47 ser de røde fargefeltene i grønn omgivelse rødere ut enn i en rød omgivelse. De grønne fargefeltene ser grønnere ut i en rød omgivelse enn i en grønn omgivelse. De grå fargefeltene Z_d ser ikke akromatiske ut i en rød eller grønn omgivelse.

Figur 48: Omfeltets innflytelse på en *RG*-skalering

Figur 48 viser enda en viktig egenskap ved akromatisk og kulørt kontrast fra fargetoneplanet rød-grønn.

Mangfoldet og omfanget av farger ser mye større ut i en mellomgrå omgivelse enn i en sort eller hvit omgivelse. I sort omgivelse ser de fleste fargene «lysende» ut, det mangler den viktige komponenten «sortaktig». I en hvit omgivelse ser de fleste fargene ut som de er tingert av sort, de mangler komponenten «lysende». I en mellomgrå omgivelse er begge komponentene «sortaktig» og «lysende» til stede i en passende andel, slik som i naturen ellers.

Figur 48 viser at alle de røde fargene i figuren har en *større visuell fargetonelikhet* med elementærfargetonen R_e enn rødfargen i figur 7 på side 10. I figur 48 ble det benyttet en tredimensjonal linearisering for å beregne rgb_{de} -koordinatene (*indeks de* = device to elementary hue) ut fra de udefinerte rgb-data. rgb_{de} koordinatene gir for alle de røde fargene CIELAB-fargetonen $h_{ab} = 26$ i utskriften, identisk med definisjonen i CIE R1-47 for elementærfargetonen rød R_e

Figur 49: Omfeltets innflytelse på *YB*-skaleringen

Figur 49 viser fargemangfoldet og fargeomfanget for farger i fargetoneplanet gul-blå. På samme måte som i planet rød-grønn ser det ut som fargemangfoldet og fargeomfanget er mye større i en mellomgrå omgivelse enn i en sort eller hvit omgivelse.

Endringen i fargenes utseende som en følge av innflytelsen fra omfeltfargen avhenger av fysiologiske prosesser i øyet. Frem til i dag har man bare lykkes med en begynnende beskrivelse av disse prosessene, se også avsnitt 18 på side 55.

17 Standard fargeverdier og fargemåling

Figur 50: CIE tristimulus-spektralverdier og CIE-kromatisitetsdiagram for 2° standardobservatør

Figur 50 *(til venstre)* viser de tre standard spektralverdifunksjonene $x_q(\lambda)$, $y_q(\lambda)$ og $z_q(\lambda)$ for CIE standardlyskilde E (stråling med lik energi) mellom 380 nm og 720 nm. I figur 50 viser kurvepunktene fargeverdiene til spektralfargene. Det finnes tre spektrale tristimulusfunksjoner som grovt sett kan spesifiseres ved de tre fargene blå $z_q(\lambda)$, grønn $y_q(\lambda)$ og rød $x_q(\lambda)$.

For spektralfargene har CIE definert de spektrale kromatisitetsverdiene

$$\begin{aligned} x(\lambda) &= x_q(\lambda) / [x_q(\lambda) + y_q(\lambda) + z_q(\lambda)] \\ y(\lambda) &= y_q(\lambda) / [x_q(\lambda) + y_q(\lambda) + z_q(\lambda)] \\ z(\lambda) &= z_q(\lambda) / [x_q(\lambda) + y_q(\lambda) + z_q(\lambda)] = 1 - x(\lambda) - y(\lambda) \end{aligned}$$

De spektrale tristimulusverdiene, den spektrale strålingen og den spektrale refleksjon av fargeprøvene gjør det mulig å beregne CIE tristimulusverdiene X, Y og Z og CIE kromatisitetsverdiene x, y og z.

$$\begin{array}{l} x = X / (X + Y + Z) \\ y = Y / (X + Y + Z) \\ z = Z / (X + Y + Z) = 1 - x - y \end{array}$$

Eksempler på denne type beregninger for de tre additive optimalfargene er gitt av *K. Richter* (1996), side 276-277. For å laste ned, se (288 sider, 2,8 MB) http://130.149.60.45/~farbmetrik/BUA4BF.PDF

I Figur 50 *(til høyre)* danner CIE spektrale standard kromatisitetsverdiene $x(\lambda)$ og $y(\lambda)$ yttergrensen for *CIE kromatisitetsdiagram* (x, y). Sammen med den såkalte purpurlinjen oppstår det en lukket flate. Purpurlinjen oppstår ved en forbindelse mellom den kort- og den langbølgede enden av spektret, tilnærmet $\lambda = 400$ nm og $\lambda = 700$ nm.

Alle farger, for eksempel overflatefarger, optimalfarger og spektralfarger, kan representeres ved punkter inne i eller på randen av kromatisitetsdiagrammet.

Kromatisitetsverdiene x og y, i tillegg til luminansverdien Y, som ifølge standarden DIN 5033 «Farbmessung» får verdien 100 for en referansehvit, spesifiserer en farge likeså entydig som CIE-tristimulusverdiene X, Y og Z. De numeriske verdiene til CIE-tristimulusverdiene X, Y og Z ligger ifølge CIE 15 *Colorimetry* mellom verdiene 0 og 100 for lyskilde E. Kromatisitetsverdiene er alltid mindre enn 1,0. De spesifiserer kromatisitetspunktene i et rettvinklet koordinatsystem med aksene x og y.

Til hvert fargepunkt (x, y) i kromatisitetsdiagrammet hører det en hel serie av farger med forskjellige luminansverdier *Y* varierende fra nesten 0 til maksimalt 100. Derfor kan farger med samme kromatisitetsverdier (x, y) i området for «gult» i kromatisitetsdiagrammet se nesten sorte ut (f. eks. med luminansverdien Y = 4) eller være kraftig gul (f. eks. med luminansverdien Y = 90). Både kromatisitetsverdiene og luminansverdien Y må angis for å definere en fargestimulus.

Figur 51: Spektrale stråleverdier til lyskildene D65 og A, og CIE målegeometri

Tristimulusverdiene avhenger av belysningskilden, for eksempel CIE standardlyskildene D65 eller A, se figur 51 *(til venstre)*. Belysningsvinkelen med fargeprøvens overflate er som regel 45°. Iakttagelses- eller målevinkel er som regel 0°, se figur 51 *(til høyre)*. Den silkematte overflaten til standard offsettrykk produserer som regel en diffus refleksjon, dog med en viss forsterkning i speileller glansretningen ved -45°. Derfor viser sorte farger seg enda sortere når de

lavere targemetrikk (targedata: lineær relasjon til CIE 1931 data)						
lineære fargebetegnelser	navn og sammenheng med CIE tri- stimulus- eller kromatisitetsverdier	merknader				
tristimulus- verdier	X, Y, Z					
kulørverdi	lineært kulørverdi diagram (A, B)	n=D65				
rød–grønn	$A = [X/Y - X_n/Y_n] Y = [a - a_n] Y$	(omfelt)				
	$= [x/y - x_n/y_n] Y$					
gul–blå	$B = -0,4 [Z/Y - Z_n/Y_n] Y = [b - b_n] Y$					
	$= -0.4 [z/y - z_n/y_n] Y$					
radiell	$C_{\rm AB} = [A^2 + B^2]^{1/2}$					
kromatisitet	lineært kromatisitetsdiagram (a, b)	sammenlign med li-				
rød–grønn	a = X / Y = x / y	neær tappe-eksitasjon				
gul–blå	b = -0.4 [Z/Y] = -0.4 [z/y]	<i>L/(L+M)=P/(P+D)</i>				
radiell	$c_{ab} = [(a - a_n)^2 + (b - b_n)^2]^{1/2}$	<i>\$/(L+M)=T/(P+D)</i>				
5-003130-L0 5-003130-F0		MN480-70				

iakttas ved 0° enn ved -45°. Luminansverdien er Y = 2,5 ved 0° og ligger i nærheten av Y = 5 ved -45°.

Tabell 3: Fargekoordinater for den lavere fargemetrikken eller fargevalensmetrikk

Tabell 3 viser koordinatene til den lavere fargemetrikken eller fargevalensmetrikken. Alle koordinatene er lineæretransformasjoner av tristimulusverdiene *X*, *Y*, *Z* eller av kromatisitetsverdiene *x*, *y*. De viktigste koordinatene er de kromatiske verdiene *A*, *B*, C_{AB} og kromatisitetene *a*, *b* og c_{ab} . De kromatiske verdiene er avhengig av tristimulusverdiene eller kromatisitetene til omfeltet (indeks n). Vanligvis benyttes kromatisitetene x_n = 0,3127 og y_n = 0,3390 til CIE standard lyskilde D65.

CIE-reseptorfølsomhetene til det menneskelige fargesyn $l_q(\lambda)$, $m_q(\lambda)$ og $s_q(\lambda)$ ifølge CIE 170-1 er lineære funksjoner av de spektrale CIE tristimulusverdifunksjonene $x_q(\lambda)$, $y_q(\lambda)$ og $z_q(\lambda)$. Lysfølsomheten $y_q(\lambda)$ er tilnærmet summen av $l_q(\lambda)$ og $m_q(\lambda)$. Avsnitt 18 på side 55 viser en fremstilling av CIE-reseptorfølsomhetene.

Ifølge tabell 3 er kromatisiteten *a* (rød- eller grønnandel) grovt sett lik kvotienten L/(L+M) og kromatisiteten *b* (blå- eller gulandel) lik kvotienten S/(L+M). Istedenfor *L*, *M*, *S* blir det i litteraturen også benyttet bokstavene *P*, *D*, *T*, som

henviser til de tre fargesynsdefektene P = protanop, D = deuteranop, T = tritanop.

Anomalier i fargesynet, enten i fargereseptorene i retina eller i den nevronale signaloverføringen, fører til delvist eller totalt defekt fargesyn. Defekt fargesyn opptrer hos 8% av mennene og hos 0,5% av kvinnene (i forholdet 16:1). De fleste av disse personene forveksler rødt og grønt. Disse fargene ser grå ut.

Personer med *fargesynsdefekter* burde ikke søke visse yrker som krever normalt fargesyn, for eksempel piloter, lokomotivførere, buss- og taxisjåfører og trykketeknikere. Bare ytterst få personer forveksler fargene gult og blått. Enda færre mennesker, såkalte monokromater, kan bare se akromatiske farger (hvitt, grått og sort). Til testing av defekt fargesyn finnes det fargetestplansjer, for eksempel etter *Ishihara* (1953) som består av tall og symboler. Observatører med normalt og defekt fargesyn gjenkjenner forskjellige sifre og symboler på disse fargetestplansjene. Med anomaloskopet til *Nagel* ifølge DIN 6160 kan graden av fargesynsdefekten bestemmes.

høyere fargemetrikk (fargedata: ikke-lineær relasjon til CIE 1931 data)						
ikke-lineære	navn og sammenheng med	merknader				
størrelser	tristimulus- eller kromatisitetsverdier					
lyshet	$L^* = 116 (Y/100)^{1/3} - 16 (Y>0.8)$	CIELAB 1976				
	tilnærming: $L^*=100 (Y/100)^{1/2,4} (Y>0)$					
kulørthet	ikke-lineær transformasjon av kulørverdier A, B					
rød–grønn	$a^* = 500 [(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$	CIELAB 1976				
	$= 500 (a' - a'_n) Y^{1/3}$					
gul-blå	$b^* = 200 [(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}]$	CIELAB 1976				
	$= 500 (b' - b'_n) Y^{1/3}$	n=D65				
radiell	$C^*_{ab} = [a^{*2} + b^{*2}]^{1/2}$	(omfelt)				
kromatisitet	ikke-lineær transformasjon av kromatisiteter x/y, z/y	sammenlign med log				
rød–grønn	$a' = (1/X_n)^{1/3} (x/y)^{1/3}$	tappe-eksitasjon				
	$= 0,2191 (x/y)^{1/3}$ for D65	log[L / (L+M)]				
gul-blå	$b' = -0.4 (1/Z_n)^{1/3} (z/y)^{1/3}$	$= \log[P / (P+D)]$				
	$= -0.08376 (z/y)^{1/3}$ for D65	log[S / (L+M)]				
radiell	$c'_{ab} = [(a' - a'_{n})^{2} + (b' - b'_{n})^{2}]^{1/2}$	$= \log[T / (P+D)]$				
5-003130-L0 5-0031	30-F0	MN481-70				

Tabell 4: Fargekoordinatene i den høyere fargemetrikken eller fargefornemmelsesmetrikken

Tabell 4 viser koordinatene til den høyere fargemetrikken eller fargefornemmelsesmetrikken. Lysheten L^* , kulørverdiene a^* , b^* , C^*_{ab} , og kromatisitetene a', b', c'_{ab} er de viktigste koordinatene til den høyere fargemetrikken eller fargefornemmelsesmetrikken. De ikke-lineære kromatisitetene a' og b' inngår også ifølge tabell 4 i beregningen av kulørverdiene a^* , b^* i CIELAB-fargerommet. Kromatisiteten (a', b') for CIELAB er ikke definert i CIE 15 og ISO 11664-4. Den ikke-lineære kromatisiteten (a', b') ligner formelt den *lineære* kromatisiteten (u', v') til CIELUV i CIE 15.

Figur 52: Munsell-, Miescher- og CIE-farger i (x, y) og (a', b')

Figur 52 viser i alle delfigurene de fire elementære fargetonene $RYGB_e$ og i tillegg de mellomliggende *Miescher*-fargetonene $R50Y_e$, $Y50G_e$, $G50B_e$ og $B50R_e$ (*nede til venstre*). Fargene til de reale (o) og de ekstrapolerte (•) fire *Munsell*-fargetonene 5*R*, 5*Y*, 5*G* og 5*PB* med *Value 2*, 5 og 8 er fremstilt oppe til venstre og til høyre. I kromatisitetsdiagrammet (*a'*, *b'*) ligger de nærmere rette linjer enn i (*x*, *y*). Kulørtheten til de fire elementærfargene i *Miescher*-fargetonesirkelen er større enn kulørtheten til de fire CIE-testfargene nr. 9 til 12 ifølge CIE 13.3 (*nede til venstre*).

Miescher-fargetonesirkelen ble fremstilt ved hjelp av 11 fargestoffer og dens kulørthet er likeså større enn for fargetonesirkelen til det *Relative Elementærfargesystemet RECS*, som bare er fremstilt av tre farger *C*, *M* og *Y* i offsettrykk, sammenlign med figur 59 på side 66 (*nede til venstre og til høyre*).

Kromatisitetsdiagrammet (*a'*, *b'*) er definert i tabell 4. Diagrammet forstørres kraftig i retning av kromatisiteten for $\lambda = 400$ nm. For anvendelse i informasjonsteknologi er dette uten betydning, da disse fargene som regel ikke forekommer hverken i offsettrykk eller på dataskjermer. Alle reelle farger ligger innenfor det området som er avbildet i figur 52 (*oppe til høyre*).

Figur 52 viser *Mieschers* elementærfarger i CIE-kromatisitetsdiagrammet (x, y). Fargeprøvene ligger ikke nøyaktig på en sirkel rundt fargepunktet for CIE-lyskilden C, som også ble benyttet i *Munsell*-systemet. Kromatisiteten til CIE-lyskilden C adskiller seg bare lite fra kromatisiteten til CIE standardlyskilden D65. Elementærfargene gul Y_e og blå B_e ligger tilnærmet på en rett linje gjennom det akromatiske punktet D65. Det betyr at man kan blande de to fargene additivt til den akromatiske fargen D65 når man benytter et egnet blandingsforhold. De to elementærfargene rød R_e og grønn G_e ligger ikke på en rett linje gjennom med det akromatiske punktet, og disse to fargene lar seg derfor blande additivt bare til gulgrønne, gulaktige eller gulrøde farger og aldri til akromatisk D65.

Tabell 2 på side 35 viser fargekjennetegnene til den lavere og høyere fargemetrikken. Det blir antatt at de komplementære apparatfargene gul Y_d og blå B_d blander seg additivt til hvit. Da kan man bare fremstille akromatiske, gule eller blå fargetoner. Er gulverdien større enn blåverdien ($Y_d > B_d$), beregnes fargeverdiene hvit-, sort- og kulørverdi i overensstemmelse med tabell 2 på side 35.

Den dikromatiske og trikromatiske blanding har stor betydning for fargeinformasjonsteknikken. For eksempel på en fargemonitor, med en fargeprojektor eller i flerfargetrykk kan alle farger fremstilles ut fra *tre* basisfarger RGB_d eller CMY_d . Den additive fargeblandingen på monitoren og på dataprojektoren produserer en dikromatisk blanding ved å blande to basisfarger med den tredje fargen, for eksempel:

$$W_{d} = R_{d} + (G_{d} + B_{d}) = R_{d} + C_{d}$$
$$W_{d} = G_{d} + (B_{d} + R_{d}) = G_{d} + M_{d}$$
$$W_{d} = B_{d} + (R_{d} + G_{d}) = B_{d} + Y_{d}$$

I fargeinformasjonsteknikken blir farger med maksimal kulørverdi C_{ab} og tilnærmet den største kulørtheten C^*_{ab} fremstilt av komplementære optimalfarger med kompensative bølgelengdegrenser λ_d og λ_c . Ønsker man et stort reproduksjonsfargerom, må man som utgangsfarger ha farger med stor kulørthet og som dessuten blander seg dikromatisk til hvit. Fargemetriske løsninger for å oppnå dette er angitt i kapittel 19.

18 Spesielle egenskaper til fargesynet

I dagslys avhenger fargesynets egenskaper av de tre reseptorene *LMS* eller *PDT*.

Figur 53: Relative reseptor-følsomheter *PDT* (eller *LMS*), $V(\lambda)$ og $V'(\lambda)$

Figur 53 viser reseptor-følsomhetene *PDT* (svarende til fargesynsdefektene P = protanop, D = deuteranop og T = tritanop) eller *LMS* ifølge CIE 170-1. De maksimale følsomhetene ligger i nærheten av bølgelengdene 570, 540 og 450 nm. En lineær kombinasjon av de fotopiske (dagssyn) følsomhetene $V(\lambda)$ og de skotopiske (nattsyn) følsomhetene $V'(\lambda)$ med et maksimum i nærheten av 500 nm blir benyttet til å beskrive det skotopiske synet mellom dag- og nattsyn.

Den langbølgede reseptoren har sin maksimale følsomhet *ikke* i rødområdet, men i området for gulgrønt. Bølgelengden $\lambda_m = 570$ nm for maksimal følsomhet er mindre enn den dominante bølgelengden $\lambda_d = 575$ nm med samme fargetone som elementærgul Y_e . Med logaritmisk ordinat er en parabel med tilnærmet samme form passende for alle reseptorene. Summer og differanser gir tilnærmet på nytt den samme parabelformen, se figur 53 *(til høyre)*. I dette tilfellet har summen og differansene *spesielle* egenskaper:

 $\log V(\lambda) = \log P(\lambda) + \log D(\lambda)$ (nytt maksimum 555 nm ut fra 570 og 540 nm) $\log P(\lambda) = \log V(\lambda) - \log D(\lambda)$ (kjent maksimum 570 nm ut fra 555 og 540 nm) $\log R(\lambda) = \log P(\lambda) - \log D(\lambda)$ (nytt maksimum 600 nm ut fra 570 og 540 nm)

På nytt oppstår parabelformen, og i tillegg blir det definert en *rød-følsomhet* $R(\lambda)$ med et maksimum ved 600 nm.

Lyshetsfølsomheten $V(\lambda)$ har en spesiell betydning for fargesynet. $V(\lambda)$ avgir grunnlaget for definisjonen av luminans. Ifølge CIE 15 *Colorimetry* blir $V(\lambda)$ beregnet lineært i overensstemmelse med *Grassmanns* lov:

$$V(\lambda) = P(\lambda) + D(\lambda)$$

Beregningen etter ovenstående logaritmiske formler gir:

$$V_{\log}(\lambda) = 10^{\left[\log P(\lambda) + \log D(\lambda)\right]}$$

Forskjellen mellom $V(\lambda)$ og $V_{log}(\lambda)$ utgjør ved spekterendene ved 400 og 700 nm omtrent 1% sammenlignet med maksimum ved 555 nm, se *K. Richter* (1996). Fargeterskelen ligger også rundt 1%. Derfor er begge beregningsmåter likeverdige for mange anvendelser. Den spektrale lysfølsomheten $V(\lambda)$ er av særlig betydning for lysteknikken. De følgende forhold beregnet med $V(\lambda)$ har spesiell betydning for fargefeltet, for eksempel

$$A(\lambda) = R(\lambda) / V(\lambda)$$
 spektral kromatisitet rød-grønn

$$B(\lambda) = -T(\lambda) / V(\lambda)$$
 spektral kromatisitet gul-blå

I anvendelser svarer disse forholdene til forholdene X/Y og Z/Y. I tabell 3 på side 51 er disse forholdene betegnet med rød-grønn og gul-blå kromatisitetene a og b. De definerer kromatisitetsdiagrammet (a, b). For bruk av kromatisitetsdiagrammet (a, b) istedenfor standard-kromatisitetsdiagrammet (x, y) i anvendelser for å beskrive fargeterskler, se *K. Richter* (1996).

Flere egenskaper ved fargesynet kan beskrives med fysiologiske fargesignaler i apers retina. *A. Valberg* (2005) har beskrevet mange fysiologiske fargesignaler som funksjon av kromatisiteten og luminansen til inn- og omfelt.

Figur 54: Fargesignaler fra kulørte og blå overflatefarger

Figur 54 viser skjematisk de målte fargesignalene for innfeltfarger med økende luminans i et hvitt omfelt. Begge skalaer er logaritmiske. Omfeltluminansen (omfelt *w*) er 100 cd/m². For kontorbelysning er det anbefalt en belysningsstyrke på 100 lux. Dette svarer til en luminans på 142 cd/m². Denne luminansen ligger i dagslys-området mellom omtrent 1 cd/m² og 10000 cd/m².

I Figur 54 følger I-signalene (I = Increment) en S-formet kurve for akromatiske og kromatiske farger med metninger mellom 0,9% og 9000% i forhold til omfeltet med en metningsverdi på 90%. Kurvene for kromatiske farger (*til venstre*) er forskjøvet mot venstre i forhold til kurvene for akromatiske farger. Kurvene for kromatiske blå farger (*til høyre*) forskyver seg mot venstre i takt med avstanden fra det akromatiske punktet i kromatisitetsdiagrammet (a, b). Like signaler, sammenlignet med hvit, nås derfor for alle kromatiske farger for en lavere luminans L enn for omfeltluminansen på $L_w = 100$ cd/m² (w = hvitt omfelt).

Ifølge *Ostwald* (1920) er optimalfarger med maksimal kulørthet definert som en «fargehalvdel» med kompensative bølgelengdegrenser. Tristimulusverdien *Y* og kulørverdien C_{ab} kan beregnes som beskrevet i tabell 3 på side 49. Tristimulusverdien Y og kulørverdien C_{ab} er lineært relatert. Begge størrelsene kan brukes til å beskrive forskyvningen mot venstre i figur 54 på side 56.

Stigningen på den *S*-formede signalkurven er størst i vendepunktet. Derfor kan man forvente at vendepunktet har den største luminans-diskriminasjonen $L / \Delta L$. For alle kromatiske og akromatiske farger ligger terskelen ved en luminans som er maksimalt mindre med en faktor 36 sammenlignet med omfeltet. Tallet 36 fremkommer som forholdet mellom tristimulusverdiene $Y_W = 90$ for hvit W og $Y_N = 2,5$ for sort N.

Sannsynligvis er luminansene for den maksimale luminansdiskriminasjonen $L/\Delta L$ tilnærmet lik luminansene for de visuelt formidlede G_0 -fargene til *Evans* (1967). G_0 -fargene viser seg i et hvitt omfelt hverken sortaktig eller lysende. Ifølge *Evans* er tristimulusverdien Y_s ved fargeterskelen (s = threshold) for alle farger med en faktor på omtrent 30 mindre enn tristimulusverdien for G_0 -fargene.

En CIE-rapport CIE R1-57 «Border between blackish and luminous colours» (Reporter *T. Seim*, NO) ble lagt frem i 2012, se under «Minutes & Reports» http://div1.cie.co.at

Komiteen CIE 1-81 «Validity of Formulae for Predicting Small Colour Differences» (Formann *K. Richter*) planlegger å legge frem en CIE-rapport om fargeterskler i 2016.

Figur 55: Komplementære optimalfarger med forskjellig båndbredde

Figur 55 viser komplementære optimalfarger med forskjellig båndbredde *(til venstre og til høyre)*. Slike komplementære optimalfarger oppstår som kantspektre av hvit-sort og sort-hvit når man betrakter kanter av forskjellig størrelse med et prisme. Allerede *Goethe* (1830) iakttok at kontinuerlige serier med komplementære farger viste seg å ha samme fargediskriminasjon på tilsvarende steder i det *positive* og *negative* spektrum.

T. Holtsmark og A. Valberg (1969) har blandet spektralfarger ved hjelp av *positive* og *negative* spalter i et spektralt fargeblandingsapparat. Begge spaltene produserer svært forskjellige optimalfarger, for eksempel gult og blått (*figur til venstre*) eller cyan og rødt (*figur til høyre*). Når det ble produsert en visuell fargedifferanse (fargeterskel), var forskyvningen av spalten omtrent den samme for komplementære optimalfarger.

En forbedret fargemetrikk for beskrivelse av fargeterskler krever derfor like og antisymmetriske koordinater. Kulørverdiene A og B i tabell 3 på side 51 har denne egenskapen, men ikke kulørthetene a^* og b^* til CIELAB-fargerommet. En fargemetrikk for fargeterskler som også tar hensyn til disse resultatene, er ventet i rapporten fra komiteen CIE 1-81 i 2016.

Figur 56: Fargeskalering og fargeterskler for kulørthetsserien T - D65 - P

Figur 56 viser skjematisk eksperimenter med fargeskalering og fargeterskler som funksjon av kromatisiteten a = x/y. Fargeskaleringen og fargetersklene er vist for farger med samme luminans *L*, i dette tilfellet med konstant tristimulusverdi *Y* = 18.

Figur 56 (oppe til venstre) viser en fargeserie mellom en sterkt kulørt turkis T over akromatisk D65 (dagslys) til en sterkt kulørt purpurrød P. Fargeserien er skalert med tilnærmet like store avstander. Den eksperimentelle situasjonen er angitt i figur 56 (oppe til venstre). Inne i en hvit omgivelse befant det seg et grått kvadratisk omfelt. Inne i dette grå omfeltet befant de to endepunktsfargene seg, i dette tilfellet turkis T og purpurrød P. I et sirkulært felt nedenfor, også inne i det grå omfeltet, kunne det kontinuerlig produseres farger med samme luminans, beliggende mellom de to endefargene T og P.

Observatøren ble presentert for en fiksert skala mellom trinnene 0, 5 og 10 for henholdsvis *T*, *D65* og *P*. Ved hjelp av en datagenerator ble det i eksperimentet produsert tilfeldige tall mellom 0 og 10. Når tallet 1 kommer, må observatøren innstille en sterkt kulørt turkis, ved 7 en middels kulørt purpur, ved 5 akroma-

tisk D65 og så videre. Målet, å produsere en visuell ekvidistant fargeskala både mellom T og D65 og mellom D65 og P, ble nøye forklart for observatøren.

Figur 56 (oppe til høyre) viser resultatene av eksperimentene i T - P - retning. Avstanden Δa mellom to nabotrinn dividert med deres relative kulørthet (1 for T - D65 og 1,5 for D65 - P) som funksjon av koordinaten a = x / y er fremstilt. Like kromatisitetsdifferanser Δa (dividert med 1, henholdsvis 1,5) svarer til like kulørthetsforskjeller. Like kulørthetsforskjeller er beskrevet på en helt enkel måte ved hjelp av like forskjeller i en fargevalensmetrisk størrelse (her a = x / y).

I tillegg ble visuelle fargeterskler, det vil si akkurat iakttagbare fargeforskjeller, bestemt eksperimentelt langs de samme fargeseriene, f.eks. *T* - *D65* - *P*. Som utgangspunkt ble det antatt at kromatisitetsavstanden Δa vil være mindre, for eksempel med en konstant faktor på 30. Men resultatene viste noe annet.

Figur 56 (*nede til venstre*) viser den eksperimentelle situasjonen. I en hvit omgivelse befant det seg som beskrevet ovenfor et grått kvadratisk omfelt. I dette grå omfeltet befant de to endefargene på skalaen seg, i dette tilfellet turkis T og purpurrød P. I det sirkulære feltet nedenfor kunne kontinuerlig alle farger mellom de to endefargene T og P presenteres. I to halvsirkelformede felt kunne like store mengder av T og P projiseres inn i det sirkulære feltet. For å oppnå en fargeterskel lå den nødvendige produserte mengde som regel på 1% av endefargene.

Figur 56 (*nede til venstre*) viser kromatisitetsavstanden Δa for fargeterskler som funksjon av den fargevalensmetriske koordinaten a = x/y. Avstandene for fargeterskler endrer seg i forholdet 1 til 3. De er minst ved grå (D65) og øker lineært i retning av *T* og *P*. Ved grått utgjør 30 terskler ett kulørthetstrinn. Ved purpurrødt *P* og ved turkis *T* utgjør 10 terskler ett kulørthetstrinn.

BAM-forskningsresultatene til *K. Richter* (1985) ble bekreftet av for eksempel *Inamura* og *Yaguchi* (2011). I prinsippet er to forskjellige fargemetrikker nødvendig for å beskrive *MacAdam*-ellipser (ved terskelen) og fargeordningssystemer som anvender fargeskalering.

Figur 56 (*nede til høyre*) viser de *relative følsomhetene* av to fargeprosesser i rød-grønn-retning. For hvert delområde T - D65 og D65 - P finnes det en egen fargesynsprosess som bestemmer hvordan fargetersklene skal vise seg. Etter denne modellen er kromatisitetsdiskriminasjonen Δa liten for akromatiske farger og stor for kulørte farger. Imidlertid gir eksperimentene i overensstemmelse med figur 56 (*nede til venstre*) det omvendte resultat. Fargesynsmodellen med fargesignaler som funksjon av luminans og kromatisitet kan forklare denne visuelle egenskapen.

Figur 54 på side 56 viser *til høyre* fargesignalene fra blå farger med tiltagende kromatisitetsdifferanse Δb sammenlignet med den akromatiske serien. Den

største luminansdiskriminasjonen $L / \Delta L$ blir nådd på en horisontal linje ved avtagende luminans av de blå fargene, sammenlignet med akromatisk hvit. Dette blir beskrevet ved den største (og samme) stigningen av alle signalene på en horisontal linje (stigningsendring av signalene). Luminansdiskriminasjonen $L / \Delta L$ på en vertikal linje avtar for de blå fargene med samme luminans, fordi stigningen av signalkurven avtar. Hvis man i tillegg antar en lineær sammenheng mellom ΔL og Δb på en vertikal linje, så avtar Δb for blå farger med samme luminans i overensstemmelse med figur 54 på side 56.

Figur 56 *(nede til høyre)* synes å vise at de relative *følsomhetene* øker med kromatisitetsdiskriminasjonen. Dette er ikke tilfelle og kan forklares som følger. Luminansen for sortterskelen er mindre enn luminansen for hvit med en faktor på 1:36. Etter *Evans* (1974) er luminansen til kulørtterskelen mindre enn for sortterskelen. Dette resultatet er i overensstemmelse med figur 56 *(nede til høyre)*.

Forskningsresultatene krever minst en fargemetrikk for fargeterskler og en for fargeskalering, om mulig med overganger. I anvendelsen er fargeterskler viktig for fastleggelsen av små fargetoleranser. Den ekvidistante skalering av større fargeforskjeller er viktig for bestemmelse av fargegjengivelses-egenskaper. Fargeprøver i fargesystemer adskiller seg stort sett fra hverandre med størrelsesorden 30 fargeterskler (eller $\Delta E^*_{ab} = 10$). Et eksempel er fargesystemet *RAL-Design* (1993), som er basert på CIELAB og har fargeprøvedifferanser på $\Delta E^*_a = 10$ i hvert fargetoneplan for 36 fargetoner.

Figur 57: Luminansskalering og -terskler av lyshetsserier N - Z - W

Figur 57 viser skjematisk eksperimenter av fargeskalering og fargeterskler som funksjon av luminansen *L*. Til fremstillingen kan også tristimulusverdien *Y* benyttes istedenfor luminansen *L*. *Y* representerer den relative luminansen og er vanligvis normert til 100 for hvit. Formelen.

$$Y = 100 L / L_{\rm W}$$

benytter innfelt-luminansen L og omfelt-luminansen L_W (ytre hvit ramme i den eksperimentelle situasjonen, se figur 57).

Figur 57 (*oppe til venstre*) viser den ekvidistante fargeskalering for en serie av innfeltfarger i de to områdene N - D65 og D65 - W.

Figur 57 (oppe til høyre) viser de målte forskjellene i innfeltluminans ΔL som funksjon av innfeltluminansen L. Det brukes en logaritmisk skala på begge akser. Omfeltluminansen er angitt som parameter. Sort-hvit kurven gjelder for omfeltluminansen $L_z = 100 \text{ cd/m}^2$ for det grå omfeltet z. Luminansen $L_z = 100 \text{ cd/m}^2$ svarer til en midlere belysningsstyrke på 1500 lux (=5 • π •100 lux). Faktoren 5 gjelder for en mellomgråfarge med refleksjonsfaktor 0,2.

Figur 57 (*nede til venstre*) viser resultatene for fargeterskler langs gråserien. Fremstillingen viser forskjellen i tristimulusverdi ΔY (proporsjonal med ΔL) i innfeltet som funksjon av tristimulusverdien Y for et utsnitt av gråserien. Terskelen ΔY er konstant lik 1% av tristimulusverdien Y i innfeltet. Stigningen nær verdien 1 (eller 0,9) er beregnet ut fra *Weber-Fechners* lov $\Delta Y / Y =$ konstant eller $\Delta L / L =$ konstant.

Figur 57 (*nede til høyre*) viser i tillegg resultatene for meget mørke og meget lyse farger for et luminans-område på seks log-enheter (i figuren 57 (*nede til venstre*) er det bare tatt med én log-enhet). Parameteren omfeltluminans beskriver spesielt den store endringen i sortterskel med omfeltluminans. For små innfeltluminanser L nåes en konstant sortterskel ΔL_s (s = threshold). Luminansforskjeller mindre enn ΔL_s er ikke synlige.

En sammenligning i figur 57 (oppe og nede til høyre) viser at luminansforskjellen $\Delta L_{\text{skalering}}$ for ekvidistante gråserier og $\Delta L_{\text{terskler}}$ for luminansterskler ikke er proporsjonale langs den samme gråserien. De ulike stigningene (ca. 0,9 og 0,45) er grunnlaget for dette utsagnet. Man kan forklare forskjellene langs gråskalaen ved to visuelle prosesser i sort-hvit-retningen, se *K. Richter* (1996).

Også i figur 56 på side 59 er det for farger med samme luminans langs serien *T* - *D65* - *P* nødvendig med to forskjellige stigninger for kromatisitetsforskjellene $\Delta a_{\text{skalering}}$ for skaleringen og $\Delta a_{\text{terskler}}$ for tersklene.

En fargesynsmodell for å beskrive både skalerings- og terskelresultatene for alle farger mangler ennå i dag.

19 Elementærfarger og fargeinformasjonsteknikk

Figur 58: Tre komplementære og alle optimalfargene med maksimal kulørthet

Figur 58 viser de tre optimalfargeparene R_m - C_m , Y_m - B_m og G_m - M_m De to fargene til hvert par er komplementære, blander seg til hvit og kalles dikromatiske. Kulørverdiene A og B er definert i tabell 3 på side 51 og fremstilt i figur 58 *(nede til venstre)*. Kulørverdien C_{AB} er *lik* for alle de dikromatiske optimalfargene som kan betegnes som en "fargehalvdel". For eksempel er de to bølgelengdegrensene (λ_1, λ_2) for rød $R_m = (561,700)$ og de to komplementære grensene til fargen cyanblå $C_m = (380, 561)$ angitt. Alle farger med maksimale (m) kulørverdier C_{AB} ligger ikke på en sirkel, men på en ellipse. Den maksimale kulørverdi C_{AB} er minst og lik for R_m og C_m og større og lik for Y_m - B_m såvel som for G_m - M_m .

For alle optimalfargene fremkommer det tilnærmet en ellipselignende kurve i kulørverdidiagrammet (A, B) istedenfor en trekant i kromatisitetsdiagrammet (x, y).

Antisymmetrien i kulørverdidiagrammet (*A*, *B*) er en forutsetning for å beskrive den *samme* fargeterskelen for komplementære optimalfarger. For dette eksperimentelle resultatet etter *Holtsmark* og *Valberg* (1969) sammenlign med figur 55 på side 58.

Dikromatiske optimalfarger, for eksempel $R_{\rm m}$ og $C_{\rm m}$, omfatter for rødt og cyan de komplementære spektralområdene 565 nm til 770 nm og 380 til 565 nm, se figur 58 *(oppe til venstre)*. For eksempel ligger bølgelengdegrensene $\lambda_1 = 380$ nm og $\lambda_2 = 565$ nm tilnærmet på en rett linje med akromatisk D65.

Fargen cyanblå $C_{\rm m}$ med området 380 nm til 565 nm («fargehalvpart») har den største kulørverdien $C_{\rm AB}$. Når for eksempel en annen spektralfarge fra området rødt med $\lambda_{\rm r} = 600$ nm blir blandet inn i tillegg, oppstår en mer hvitaktig farge og kulørverdien $C_{\rm AB}$ synker.

Figur 58 (oppe til venstre) viser i tillegg to optimalfarger G_o og M_o , som sammen med $RYCB_m$ danner en trekant i standard-kromatisitetsdiagrammet. Spektralområdet 495 til 565 nm for fargen G_o er mindre enn området 475 til 575 nm (med kompensative bølgelengdegrenser) for fargen G_m . Grønn G_o er derfor mørkere enn G_m . I standard-kromatisitetsdiagrammet (x, y) er kromatisitetsforskjellen mellom G_o og D65 større enn forskjellen mellom G_m og D65. Dette er imidlertid omvendt for kulørverdiforskjellen, og der gjelder $C_{AB,Go} < C_{AB,Gm}$.

Arealet av basis- og blandingsfarger i et hvilket som helst kromatisitetsdiagram er derfor ikke egnet til å beskrive fargeomfanget i et reproduksjonssystem. Likevel brukes arealstørrelsen i kromatisitetsdiagrammet til å fastslå fargeomfanget av et reproduksjonssystem i mange IEC- og ISO-normer. En mer egnet bestemmelse tar i bruk arealene i kulørverdi- eller i kulørthetsdiagrammet.

Eksperimentelle resultater fra *Miescher* og *Weisenhorn* (1961) med optimalfarger i et hvitt omfelt har vist at de dikromatiske optimalfargene, som alle har maksimal kulørverdi, samtidig har den største kulørthet. Imidlertid var i mange tilfelle båndbredden litt mindre enn for en *«fargehalvpart»* (med kompensative bølgelengdegrenser).

Figur 58 viser alle beregnede dikromatiske optimalfarger som en kontinuerlig kurve i standard-kromatisitetsdiagrammet (*x*, *y*) (oppe til høyre), i kulørverdidiagrammet (*A*, *B*) (nede til venstre), og i CIELAB-kulørthetsdiagrammet (a^* , b^*) (nede til høyre). Disse komplementære optimalfargene har alle en maksimal kulørverdi C_{AB} (nede til venstre). De beregnede bølgelengdegrensene (oppe til høyre) for D65 adskiller seg litt fra tilnærmingene for de tre CIE-lyskildene D65, E og C (oppe til venstre). CIELAB-fargesystemet er hovedsakelig basert på skaleringen i *Munsell*-fargeordningssystemet og krever *ikke-lineære* koordinater.

For å beskrive fargeterskler krever for eksempel fargesynsmodellene til *Guth* (1972) bare *lineære* koordinater.

Alle dikromatiske optimalfarger har samme kulørverdi C_{AB} . For de dikromatiske optimalfargene er CIELAB-kulørtheten i området rød-gul en faktor 2 større enn i det komplementære området cyan-blå. Derfor kan det være at definisjonen av CIELAB-kulørtheten C^*_{ab} inneholder en feil med en faktor tilnærmet lik 2.

Figur 59: Apparat- og elementærfarger i fargerommet sRGB og RECS (Offset)

Figur 59 viser apparatfargene i *sRGB*-standarddisplayet og i det *Relative Elementærfargesystemet RECS* (standard offset) (oppe og nede til venstre). De apparatuavhengige elementærfargetonene *RYGB*_e ifølge CIE R1-47 med CIE-LAB-fargetonevinklene $h_{ab} = 26$, 92, 162 og 272 grader kan blandes ut fra de seks apparatfargene *RYGCBM*_d (d = device) (oppe og nede til høyre). I det *Relative Elementærfargesystemet RECS* med over 2000 farger ble det trykt en 16-delt fargetonesirkel med de fire elementærfargetonene $RYGB_e$ som ankerfargetoner, se *RECS*. I hver av de fire sektorene er det tre mellomfargetoner. For de 16 fargetonene foreligger det 5- og 16-trinns fargeserier i standard-offsettrykk på standard offsetpapir.

20 Apparatuavhengig elementærfargeutskrift

For elementærfargetonene i CIELAB-systemet definerer rapporten CIE R1-47 fargetonevinklene $h_{ab,e} = 26, 92, 162$ og 272. Disse tillater en apparatuavhengig fargetoneutskrift på ethvert fargeapparat. Figur 59 på side 66 viser løsningen for *sRGB*-fargerommet (standard display) og *RECS*-fargerommet (standard offset). For *rgb*-data (1 0 0)_e (1 1 0)_e, (0 1 0)_e, (0 0 1)_e blir det produsert apparatfarger med maksimal kulørthet $C^*_{ab,d}$ med fargetonevinklene $h_{ab,e} = 26, 92, 162$ og 272. Dette fører til en apparatuavhengig lyshet L^*_d og kulørthet $C^*_{ab,d}$.

Som neste trinn ved siden av definisjonen av CIELAB-fargetonevinklene forventes en definisjon av lysheten L^*_e og kulørtheten $C^*_{ab,e}$ til elementærfargene. En første definisjon er kommet i rapporten CIE R1-57 «Border between blackish and luminous colours» (*Reporter T. Seim, Norway*).

For lyskilde D65 kunne *optimalfargene* (indeks o og e) med den største kulørverdien $C_{AB,oe}$ og CIELAB-elementær-fargetonevinklene $h_{ab,oe} = 26, 92, 162$ og 272 ligge på grensen «hverken sortaktig eller lysende». Disse fargene har den følgende *apparatuavhengige* lysheten L^*_{oe} og kulørthet $C^*_{ab,oe}$

Farge	rgb_{oe}^{*}	L^*_{oe}	$C^*_{ab,oe}$	$h_{\rm ab,oe}$	x _{oe}	\mathcal{Y}_{oe}	$Y_{\rm oe}$
R _{oe}	100	75	65	26	0,57	0,33	48
Y _{oe}	110	89	136	92	0,47	0,51	73
G_{oe}	010	79	120	162	0,19	0,52	55
B _{oe}	001	60	69	272	0,17	0,19	28

Det er ikke kjent om de optimalfargene som er beregnet her virkelig ligger på den visuelle grensen «hverken sortaktig eller lysende». Den fluorescerende lysfargen som er trykket i figur 28 på side 27 ligger over denne grensen, som må bestemmes visuelt.

Med displays vil man forutsetningsvis kunne nå CIELAB-data for $RYGB_{oe}$ for standard kontorluminans på 142 cd/m². Denne oppstår med belysningsstyrken 500 lux på hvitt papir (refleksjonsfaktor $R(\lambda) = 0,886$)

For overflatefarger (uten fluorescens eller retrorefleksjon) vil man spesielt for grønn G_{oe} og blå B_{oe} ikke nå CIELAB-data. Formen på refleksjonsfaktorene for overflatefarger ligger for langt fra optimalfargenes faktorer for grønn G_{oe} og blå B_{oe} , sammenlign figur 26 på side 25.

21 Affin fargereproduksjon

I fargebildeteknologien er fargelegemet i ethvert fargetoneplan begrenset av en trekant hvit – mest kulørte farge – sort. Både i trykk og på fargemonitoren foreligger det en additiv fargeblanding på denne trekanten. Løsninger for fargereproduksjon på grensen og innenfor trekanten er viktig i anvendelsen.

Figur 60: Affin fargereproduksjon og minimal fargeavstand ΔE^*_{ab}

Figur 60 viser den affine fargereproduksjonen *(til venstre)* og en reproduksjon med en minste fargeavstand ΔE^*_{ab} *(til høyre)* mellom monitorfarger *(gule punkter)* og standard trykkfarger *(sorte punkter)*.

Figur 60 *(til venstre)* viser at for fargetonen cyanblå ligger 20% av monitorfargene og 30% av trykkfargene utenfor det felles reproduksjonsarealet. Den affine fargereproduksjonen benytter hele fargerommet for begge apparatene.

Figur 60 (*til høyre*) viser den nåværende løsningen for de fleste fargemanagement-metodene. Målet er den minste fargeavstand ΔE^*_{ab} . I dette tilfellet blir 30% av trykkeområdet for cyanblå ikke benyttet. *ICC*-fargemanagement-standarden tillater firmaspesifikke løsninger og derfor blir det store utskriftsmangfoldet testet med prøveplansjer etter DIN 33872-1 til 6, se http://www.ps.bam.de/33872

For et utfylt DIN-formular med utskriftspørsmål *(se også andre)* http://130,149.60.45/~farbmetrik/LG95 Enhver som praktiserer innenfor fargereproduksjon kan spørre sin apparatprodusent om løsninger i overensstemmelse med DIN 33872-1 to -6 eller for eksempel med ISO/IEC 15775.

Dette arbeidet har vist at både den *apparatuavhengige fargetonereproduksjonen* og den *affine* reproduksjonen er mulig. Det mulige neste trinn for en *apparatuavhengig fargereproduksjon* kunne baseres på CIE-data fra figur 58 på side 64 med de mest kulørte optimalfargene og på avsnitt 21.

22 Litteratur

Standarder og lignende publikasjoner

CIE 13.3:1995, Method of measuring and specifying colour rendering of light sources.

CIE 15: 2004, Colorimetry, 3rd edition.

CIE 170-1:2006, Fundamental chromaticity diagram with physiological axes CIE R1-47:2009, Hue angles of elementary colours, see http://div1.cie.co.at/ ISO 11664-4:2008(E)/CIE S 014-4/E:2007: Joint ISO/CIE Standard: Colorimetry — Part 4: CIE 1976 L*a*b* Colour Space

DIN 33872-1 bis -6 (2010), "Informationstechnik - Büro- und Datentechnik -Verfahren zur Kennzeichnung der relativen Farbwiedergabe mit JA/NEIN Kriterien", siehe http://www.ps.bam.de/33872

ISO/IEC TR 24705 (2005) "Information technology - Office machines - Method of specifying relative colour reproduction with YES/NO criteria"

Forfatter-publikasjoner

Evans, R. M. und S. B. Swenholt (1967), Chromatic Strength of Colors; Dominant Wavelength and Purity, J. opt. Soc. Amer. 57, S. 1319-1324

Holtsmark, T. and Valberg, A. (1969), Colour discrimination and hue, Nature, Volume 224, October 25, S. 366-367.

Miescher, K. (1948), Neuermittlung der Urfarben und deren Bedeutung für die Farbordnung, Helv. Physiol. Acta 6, C12-C13

Miescher, K., Richter, K. und Valberg, A. (1982), Farbe und Farbsehen, Beschreibung von Experimenten für die Farbenlehre, Farbe + Design, Nr. 23/24 Newhall, S.M., D. Nickerson und D.B. Judd (1943), Final report of the O.S.A. subcommittee on the spacing of the Munsell colors. J. opt. Soc. Amer. 33, S. 385-418

Richter, K. (1979), BAM-Forschungsbericht Nr. 61, Beschreibung von Problemen der höheren Farbmetrik mit Hilfe des Gegenfarbensystems, 99 pages, ISSN 0172-7613

Richter, K. (1980), Cube root colour spaces and chromatic adaptation, Color Research and Application 5, no. 1, pages 25-43

Richter, K. (1985), BAM-Forschungsbericht no. 115, Farbempfindungsmerkmal Elementarbuntton und Buntheitsabstände als Funktion von Farbart und Leuchtdichte von In- und Umfeld, 118 pages, ISBN 3-88314-420-7

Richter, K. (1996), Computergrafik und Farbmetrik - Farbsysteme, PostScript und geräteunabhängige CIE-Farben, VDE-Verlag, 288 pages with about 500 colour figures and many additional references, see http://www.ps.bam.de/buche Richter, K (2011) ISO-CIE trend for the description of colour threshold data by new coordinates based on the device independent elementary colour coordinates of the report CIE R1-47:2009, see

http://130.149.60.45/~farbmetrik/CIE_ISO_10.PDF

Valberg, A. (2005), Light, Vision, Color, Wiley, ISBN 0470 849037, 462 pages.

23 Takksigelser TU-utstilling

Karl Miescher – stiftelsen til støtte for fargevitenskapen har støttet offsettrykkingen av *Farge og Fargesyn* på tysk og engelsk og internett-versjoner på andre språk.

Siden år 2000 har professorene *H. Kaase* og *S. Voelker* kontinuerlig støttet oppbygningen og vedlikeholdet av utstillingen *Farge og Fargesyn* ved Avdelingen for Lysteknikk ved Det Tekniske Universitet i Berlin.

Merknader til historien om utstillingen Farge og Fargesyn

I løpet av årene 1963/64 ble utstillingen *Farge og Fargesyn* utviklet av *K. Richter* under ledelse av *Dr. Karl Miescher* i laboratoriet for fargemetrikk ved Det Fysikalske Institutt ved Universitetet i Basel/CH. Utstillingen ble vist ved den sveitsiske landsutstillingen *Expo 64* i 6 måneder i Lausanne/CH. Etter *Expo 1964* ble utstillingen bygget opp ved det Matematisk-Naturvitenskaplige gymnas i Basel/CH og vist der i 30 år.

I år 2000 ble den på nytt bygget opp ved Det Tekniske Universitet i Berlin ved hjelp av finansielle midler fra *Karl Miescher-Stiftelsen*. I Berlin har *K. Richter* fortløpende utvidet utstillingen med noen nyere utviklinger i fargeinformatikken. Siden 2000 har mange studenter og andre fargeinteresserte besøkt utstillingen i Berlin.

Merknader til de tidligere opplagene og opplaget i 2012

I 1964 utkom det første opplaget uten fargebilder på tysk, fransk og italiensk til den sveitsiske landsutstillingen «Expo 1964»i Lausanne/CH.

Etter det andre opplaget i 1978 utkom det tredje opplaget i 1982 (med 50 fargebilder) i tidsskriftet «Farbe + Design». I tillegg ble det laget et særtrykk på tysk og engelsk. Jeg takker *Prof. Dr. Arne Valberg* Trondheim/Norge som medredaktør av denne utgaven.

Det fjerde opplaget i 2012 inneholder 130 fargebilder, som i tillegg viser de nye utviklingene i området for fargeinformasjonsteknologi. Det finnes versjoner for offset-, monitor- og printer-utskrift og internettutgivelser på tysk og engelsk. Internettutgivelser er planlagt på flere språk.

For gratis nedlasting av de siste internettutgivelsene og for bestilling av offsetversjonene, se

http://130.149.60.45/~farbmetrik/color

og

http://farbe.li.tu-berlin.de/color

Formål og anvendelse av særtrykkene fra 2012

Særtrykkene er tenkt til bruk for innføring i fargelæren for undervisningsformål. Ulike anvendelsesområder av farge blir forbundet uten forkunnskaper om farge men med noe teknisk forståelse, f. eks.

> visuelt grunnlag og egenskaper til fargesyn fargemålingsteknikk og fargemetrikk *Relativt elementærfargesystem RECS* i fargeinformasjonsteknologien

For videre studium anbefales det en fagbok (bare på tysk) med tittelen Computergrafik und Farbmetrik – Farbsysteme, PostScript, geräteunabhängige CIE-*Farben.* Denne utgave kom ut i 1996 på VDE-Verlag med 500 fargebilder og figurbeskrivelser på tysk og engelsk. Bildene kan benyttes separat til undervisningsformål. PDF-filene av boken og fargebildene kan fritt lastes ned, se http://130.149.60.45/~farbmetrik/buch.html

Sekretariatet ved avdelingen for Lysteknikk ved Det Tekniske Universitet i Berlin kan arrangere guidete visninger av utstillingen Farge og Fargesyn på forespørsel, se

http://www.li.tu-berlin.de

Copyright til den fjerde utgaven av Farge og Fargesyn Prof. Dr. Klaus Richter Walterhoeferstrasse 44, D-14165 Berlin Internet: http://130.149.60.45/~farbmetrik/ og http://farbe.li.tu-berlin.de/

email: klaus.richter@mac.com
24 Prøveplansjer og tekniske henvisninger

Navn på prøveplansjene med 7 tegn

Eksempler: PE40S0S, PN7011S, PG7311L, PF4611P, PG7911P

Det første tegnet beskriver en stor filkatalog (her *P*), det andre tegnet beskriver språket (E = engelsk, G = tysk, F= fransk, S = spansk, I = italiensk og N = norsk)

De to neste sifferne omfatter området fra 00 til 99. Endesifferet 0 produserer en output på et sRGB-Display. Endesifferne 3 og 6 definerer en output i offsettrykk på papir L med de to separasjonene *CMYK* og *CMY0*. Endesifferet 9 definerer en trykkeoutput på papir A med separasjonen *CMYK*.

De to neste tegnene S0 definerer en startoutput (S0) med blandet rgb- og cmykdata på filen. Eller tegnene 00 og 01 definerer en rgb-overføring til output av apparatfarger (00) eller elementærfarger (01). Eller tegnene 10 og 11 definerer en rgb-3D-Linearisering til output av apparatfarger (10) eller elementærfarger (11).

Det siste tegnet *S*, *L*, eller *P* definerer output på et *sRGB*-Display (*S*), i offsettrykk på papir L (*L*) eller en printer på papir *A* (*P*).

Prøveplansjer på forsiden

PN7011S, PN7311L, PN7911P: 16- og 8-delt elementær-fargetonesirkel med elementærfarger ifølge CIE R1-47 og DIN 33872-1 til 6

Prøveplansjer i vedlegget

1. Output S uten separasjon og L og P med separasjonen CMYK

PN1011S, PN1311L, PN1911P: Prøveplansje 1 for fargegjengivelse med 54 farger i *RECS*-fargesystemet.

PN40sos, PN40oos, PN40ois, PN40ios, PN40iis PN43sol, PN43ool, PN43oil, PN43iol, PN43iil PN49sop, PN49oop, PN49oip, PN49iop, PN49iip: 1080 farger til fargemåling for output-styring

TN7011S, TN7311L, TN7911P: Akromatiske prøveplansjer ifølge ISO/IEC 15775, ISO/IEC TR 24705 og ISO 9241-306, vedlegg D.

TN80115, TN83115, TN89115:

Kulørte prøveplansjer med ISO/IEC-figurer ifølge ISO/IEC 15775, ISO/IEC TR24705 og ISO 9241-306, vedlegg E.

2. Output L og P med separassjonen CMY0

PN46sol, PN46ool, PN46oil, PN46iol, PN46iil, PN46sop, PN46oop, PN46oip, PN46iop, PN46iip; 1080 farger til fargemåling for output-styring

3. Output bare L og P med de to separasjonene CMYK og CMY0

PN2311L, *PN2311P*: Prøveplansje 2 for fargegjengivelse med metamere farger for D65 og D50.

PN3311L, *PN3311P*: Prøveplansje 3 for fargegjengivelse med metamere farger for A og P4000,

Prøveplansjer på indre og ytre bakre omslagsside

PN91sos, PN91soL, PN91soP: Tabeller med CIE-data for den 48-trinns fargetonesirkelen

PN9011S, *PN9311L*, *PN9911L*: 5- og 16-trinns fargeserier for elementær-fargetone rød R_e ifølge DIN 33872-4

Tekniske merknader til tabellen på den bakre indre omslagssiden:

For en 48-trinns fargetonesirkel viser tabellen i spalte 2 *rgb*-inngangsdata og CIELAB-fargemålingsdataene *LabCh**. I spalte 3 er dataene interpolert for den neste heltallige CIELAB-fargetonevinkelen h_{ab} (0<i<360).

 rgb_{s} -systemet (s = Standard) tilordner rgb_{s} -dataene (1 0 0)_s, (1 1 0)_s, (0 1 0)_s, (0 1 1)_s, (0 1 1)_s, (0 0 1)_s og (1 0 1)_s til vinklene 30, 90, 150, 210, 270 og 330. I elementærfargesystemet blir rgb_{e} -data (1 0 0)_e, (1 1 0)_e, (0 1 0)_e, (0 1 1)_e, (0 0 1)_e og(1 0 1)_eifølge CIE R1-49 tilordnet vinklene 26, 92,162, 217, 272 og 329 i rgb_{e} -systemet (e=elementary)

For begge systemene ble likeledes CIELAB-dataene som funksjon av vinkelen i interpolert. For vilkårlige *rgb*-data (med unntak av r=g=b) gjelder ifølge DIN 33872-1:

 $i = 360 \operatorname{atan} \{ [r \sin(30) + g \sin(150) - b \sin(270)] / [r \cos(30) + g \cos(150)] \}$

Indexen i leverer fra to tabeller med vinkelen i mellom 0 og 360 grader valgfritt CIELAB-dataene *LabCh** eller de tilordnete *rgb*-dataene for apparatfargesystemet eller for elementærfarge-output-systemet.

Ved anvendelser blir de søkte fargene beregnet for en vilkårlig fargetonevinkel i ut fra CIELAB-data *LabCh** for maximalfargene og ut fra hvitt W og sort N. For

å produsere de søkte data brukes styringsdataene rgb_{dd} (device to device output) og gb_{de} (device to elementary output), som gir seg ut fra en 3D-linearisering av CIELAB-fargerommet.

For ytterligere informasjon om output-linearisering på displays, i offsettrykk og på printere se den CIE-rapporten CIE R8-09:2015.

Outputeksempler fra en elementær-fargetonesirkel med maksimal kulørthet og eksempler for en 5- og 16-trinns fargetrekant for fargetonen elementærrød R_e befinner seg på forside og bakside av boken "Farge og fargesyn", se

http://130.149.60.45/~farbmetrik/color

Visio

000

orma

ours

tarv

ement

http://130.149.60.45/~farbmetrik/PN70/PN7011SP.PDF & http://130.149.60.45/~farbmetrik/PN70/PN7011SP.TXT & http://130.149.60.45/~farbmetrik/PN70/PN70.HTM

М http://130 1/10 60 15/...farb otril/DN01/DN011 (ND DDF / DC) C /

0

$\overline{\mathbb{A}}$	N: ingen 3D-linearisering (OL) i fil (F) eller PS-startup (S), side 6/1																														
Y	1	Data til maksimalfargen M in fargemetrisk system sRGB standard device: no separation. D65 for input eller output: Seks fargetonevinkler til 60 graders standardfargene RVGCRM: has a = 30,0, 90,0, 150,0, 210,0, 270,0, 330,0																													
+ So	seks	fargeto	onevink	ler til apparatfa	argene	sk sys RYGC	BM _d : h	ab,d = 4	0.0, 102	evice; no 9, 136.0	, 196.4,	306.3, 3	5 for in 28.2; se	ks farge	r outpi etonevi	nkler til	element	tærfarge	ne <i>RY</i>	GCB	iers stan M _e : h _{ab,}	dardiar _e = 25.5,	92.3, 16	GCBM 52.2, 21	l _s : n _{ab,ds} = 17.0, 271.7	= 30.0, 90 , 328.6).0, 13	50.0, 210.0, 2	.70.0, 330.0	;	\downarrow_z
e	h _{ab,o}	i h _{ab,s}	, h _{ab,e}	^{rgb*} dd361M	LA	B*dd	x361Mi	(x=Lab	Ch)	rgb*	ds361N	∕li L	AB*ds	x361Mi	(x=La	bCh)	rgb*d	ld361Mi		rgb* ₍	de361Mi	i LA	B* _{dex3}	61Mi (x=LabCh) <i>r</i> g	g ^{b*} dd	1361Mi	rgb*ddrgb	is rgb*de	U.
rie 100- 100- 100- 100- 100- 100- 100- 100	40	30	25	1.0 0.0 0.0	0 50.	4 76	.9 64.5	100.4	40	R _d 1.0	0.0	0.203 5	0.8 78	.0 45.1	90.1	30 R _s	1.0	0.0 0	0.0	1.0	0.0 ().263 50	9 78.3	37.3	86.7 2	5 R _e 1	.0	0.0 0.0			Ver B
lei	40	31	26	1.0 0.016 0.0	0 50.	6 76	.5 64.6	100.1	40	1.0	0.0	0.189 5	0.7 78	.0 46.9	91.0	31	1.0	0.017 0	0.0	1.0	0.0 (0.251 50	9 78.0	39.0	87.2 20	5 1	.0	0.017 0.0		_	nde
nğ	40	32	27	1.0 0.033 0.0	0 50.	/ /6 0 75	.1 04.0	99.8 00.6	40	1.0	0.0	0.1/4 5	0.7 77	.9 48.7	91.8	32	1.0	0.033 0	0.0	1.0	0.0 ().236 50	8 /8.0 9 79 1	41.0	88.1 2	/ I. 2 1	.0 0	0.033 0.0			els
n f	40	34	20	1.0 0.05 0.0	0 51	0 75	3 64 7	99.3	40	1.0	0.0	0.10 5	0.7 77	6 52 3	93.6	34	1.0	0.05 0	0.0	1.0	0.0 () 204 50	8 78.0	44.9	90.1 20	9 1	0	0.05 0.0			e f
n ile	40	35	31	1.0 0.083 0.0	0 51.	1 74	.9 64.8	99.0	40	1.0	0.0	0.131 5	0.6 77	.3 54.2	94.4	35	1.0	0.083 0	0.0	1.0	0.0 ().188 50	7 78.0	46.9	91.0 3	1 1	.0	0.083 0.0			Or II
	41	36	32	1.0 0.1 0.0	0 51.	3 74	.5 64.8	98.7	41	1.0	0.0	0.11 5	0.6 77	.3 56.1	95.5	36	1.0	0.1 0	0.0	1.0	0.0 (0.172 50	7 77.9	49.0	92.0 32	2 1	.0	0.1 0.0			Вю
n hti	41	37	33	1.0 0.116 0.0	0 51.	4 74	.1 64.9	98.5	41	1.0	0.0	0.082 5	0.6 77	.2 58.2	96.7	37	1.0	0.117 0	0.0	1.0	0.0 (0.156 50	7 77.7	51.0	92.9 3	3 1	.0	0.117 0.0			lål
÷.	41	38	34	1.0 0.133 0.0	0 51.	7 73	.4 65.0	98.0	41	1.0	0.0	0.055 5	0.5 77	.2 60.3	98.0	38	1.0	0.133 0	0.0	1.0	0.0 (0.14 50	6 77.5	53.0	93.9 34	4 1	.0	0.133 0.0			ing 01
1	41	39	35	1.0 0.15 0.0	0 52.	0 72	.4 65.2	97.4	41	1.0	0.0	0.028 5	0.5 77	.1 62.4	99.2	39	1.0	0.15 0	0.0	1.0	0.0 (0.123 50	6 77.2	55.1	94.9 3	5 1	.0	0.15 0.0			^g 3(
$\frac{1}{2}$	42	40	36	1.0 0.166 0.0	0 52.	3 71	.4 65.3	96.8	42	1.0	0.0	0.0 5	0.5 76	.9 64.6	5 100.	4 40	1.0	0.167 0	0.0	1.0	0.0 ().093 50	6 77.3	57.4	96.3 3	5 1	.0	0.167 0.0		_	.v .
).1	42	41	3/	1.0 0.183 0.0	0 52.	/ /0 0 69	.5 65.5 5 65.6	96.2 95.6	42	1.0	0.095	0.0 5	1.3 /4	.0 04.9	98.9 075	41	1.0	0.183 0	0.0	1.0	0.0 ().062 50	5 //.2 5 77 1	59.7 62.1	97.6 3	/ 1. 2 1	.0 0	$0.183 \ 0.0$			dis
49	43	43	39	1.0 0.2 0.0	0 53	4 68	.5 05.0 6 65.7	95.0 95.0	43	1.0	0.151	0.0 5	2.1 72 2.8 70	3 65 5	5 96 1	42	1.0	0.2 0	0.0	1.0	0.0 (001 50	5 769	64 5	100.4 39	9 1	0	0.2 0.0			pl
.6	44	44	41	1.0 0.233 0.0	0 53.	7 67	.6 65.8	94.4	44	1.0	0.225	0.0 5	3.6 68	.2 65.8	94.8	44	1.0	0.233 0	0.0	1.0	0.102 ().0 51	4 74.4	64.9	98.8 4	1 1	.0	0.233 0.0			ay ay
n° 0.∠	44	45	42	1.0 0.25 0.0	0 54.	0 66	.7 65.9	93.8	44	1.0	0.256	0.0 5	4.3 66	.1 66.1	93.5	45	1.0	0.25 0	0.0	1.0	0.157 (0.0 52	2 72.0	65.3	97.2 42	2 1	.0	0.25 0.0			0
לא לי	45	46	43	1.0 0.266 0.0	0 54.	6 65	.1 66.3	93.0	45	1.0	0.277	0.0 5	5.0 64	.3 66.6	5 92.5	46	1.0	0.267 0	0.0	1.0	0.199 ().0 53	0 69.6	65.6	95.7 43	3 1	.0	0.267 0.0			utg
n ~_	46	47	44	1.0 0.283 0.0	.0 55.	1 63	.6 66.6	92.2	46	1.0	0.297	0.0 5	5.6 62	.4 66.9	91.5	47	1.0	0.283 0	0.0	1.0	0.24 (0.0 53	9 67.3	65.9	94.2 4	4 1	.0	0.283 0.0			9 U
r ar	47	48	45	1.0 0.3 0.0	0 55.	7 62	.1 66.9	91.3	47	1.0	0.318	0.0 5	6.3 60	.6 67.3	90.5	48	1.0	0.3 0	0.0	1.0	0.267 ().0 54	7 65.1	66.4	93.0 4	5 1	.0	0.3 0.0		_	, 1
bn	47	49	46	1.0 0.316 0.0	0 56.	2 60	.6 67.2	90.5	47	1.0	0.338	0.0 5	7.0 58	.7 67.6	5 89.5	49	1.0	0.317 0	0.0	1.0	0.29 ().0 55	4 63.1	66.8	91.9 4	5 1	.0	0.317 0.0		_	ng NO
H E	48	50	4/	1.0 0.333 0.0	0 50.	8 39 2 57	.1 07.5	89.7	48	1.0	0.359	0.0 5	/./ 50 9.2 55	.9 67.8	88.5 87.6	50	1.0	0.333 0	0.0	1.0	0.313 ().0 56	2 61.0	67.5	90.8 4	/ I. 2 1	.0 0	0.333 0.0			G AP
<u>1</u> <u>H</u> .	50	52	40 49	1.0 0.35 0.0	0 57.	5 57 9 56	2 67 9	88.1	49 50	1.0	0.378	0.0 5	8.9 53 8.9 53	.1 00.1 6 68 6	67.0 87.0	52	1.0	0.35 0	0.0	1.0	0.358 (0.0 50	9 59.0 7 56.9	67.8	886 4	9 1	.0	0.35 0.0			.P
ŧS	51	53	51	1.0 0.383 0.0	0 58.	5 54	.5 68.2	87.3	51	1.0	0.406	0.0 5	9.6 52	.0 69.0) 86.4	52	1.0	0.383 0	0.0	1.0	0.379 ().0 58	4 55.0	68.1	87.6 5	1 1	.0	0.383 0.0			epa DH
Ž	52	54	52	1.0 0.4 0.0	0 59.	3 52	.6 68.8	86.6	52	1.0	0.42	0.0 6	0.2 50	.4 69.4	85.8	54	1.0	0.4 0	0.0	1.0	0.395 ().0 59	1 53.2	68.7	86.9 52	2 1	.0	0.4 0.0			ara
191	53	55	53	1.0 0.416 0.0	0 60.	0 50	.7 69.3	85.9	53	1.0	0.433	0.0 6	0.8 48	.8 69.8	8 85.2	55	1.0	0.417 0	0.0	1.0	0.41 ().0 59	7 51.5	69.1	86.2 5	3 1	.0	0.417 0.0			Sj.P
2 P	54	56	54	1.0 0.433 0.0	0 60.	7 48	.8 69.7	85.1	54	1.0	0.447	0.0 6	1.4 47	.3 70.1	84.5	56	1.0	0.433 0	0.0	1.0	0.426 ().0 60	4 49.7	69.6	85.5 54	4 1	.0	0.433 0.0			on
$-\mathbf{Z}$	56	57	55	1.0 0.45 0.0	0 61.	4 46	.9 70.1	84.4	56	1.0	0.461	0.0 6	2.0 45	.7 70.4	83.9	57	1.0	0.45 0	0.0	1.0	0.441 ().0 61	1 48.0	69.9	84.8 5	5 1	.0	0.45 0.0		_	
491 10	57	58	56	1.0 0.466 0.0	0 62.	2 45	.1 70.4	83.6	57	1.0	0.475	0.0 6	2.6 44	.1 70.7	83.3	58	1.0	0.467 0	0.0	1.0	0.457 ().0 61	8 46.2	70.3	84.1 50	5 1	.0	0.467 0.0			
ν.Ή	58 50	59 60	57 58	1.0 0.483 0.0	0 62.	9 43 6 41	.2 /0./	82.9	58 50	1.0	0.489	0.0 6	3.2 42 2 8 41	.6 /0.9	/ 82.7	59 60	1.0	0.483 0	0.0	1.0	0.4/2 (0.0 62	5 44.5 1 42.9	70.0	83.4 5	/ I. 2 1	.0 0	0.483 0.0			
	61	61	50 60	1.0 0.5 0.0	0 64	5 39	3 71.0	81.8	61	1.0	0.502	0.0 6	3.8 41 4.4 39	7 716	5 81 9	61	1.0	0.5 0	0.0	1.0	0.488 (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 42.0 8 41 1	70.9	82.2 6) 1	.0 0	0.5 0.0		_	T
শ্ব	62	62	61	1.0 0.533 0.0	0 65.	3 37	.2 72.4	81.4	62	1.0	0.525	0.0 6	4.9 38	.3 72.1	81.7	62	1.0	0.533 0	0.0	1.0	0.515 ().0 64	4 39.5	71.7	81.9 6	1 1	.0	0.533 0.0			Ш
<u>+</u> }	64	63	62	1.0 0.55 0.0	.0 66.	2 35	.1 73.0	81.0	64	1.0	0.536	0.0 6	5.5 37	.0 72.5	81.4	63	1.0	0.55 0	0.0	1.0	0.527 ().0 65	1 38.0	72.2	81.6 62	2 1	.0	0.55 0.0			-in
2	65	64	63	1.0 0.566 0.0	.0 67.	1 33	.0 73.5	80.6	65	1.0	0.547	0.0 6	6.1 35	.6 72.9	81.1	64	1.0	0.567 0	0.0	1.0	0.54 ().0 65	7 36.5	72.7	81.3 6	3 1	.0	0.567 0.0			nat
	67	65	64	1.0 0.583 0.0	0 67.	9 31	.0 74.0	80.3	67	1.0	0.558	0.0 6	6.7 34	.2 73.3	80.9	65	1.0	0.583 0	0.0	1.0	0.552 ().0 66	4 34.9	73.1	81.0 64	4 1	.0	0.583 0.0			er
Þ	68	66	65	1.0 0.6 0.0	0 68.	8 28	.9 74.5	79.9	68	1.0	0.569	0.0 6	7.2 32	.8 73.7	80.6	66	1.0	0.6 0	0.0	1.0	0.564 ().0 67	0 33.4	73.5	80.7 6	5 1	.0	0.6 0.0		_	ial
n.	70	67	66 67	1.0 0.616 0.0	0 69.	6 26 5 24	.8 74.8	79.5	70	1.0	0.58	0.0 6	7.8 31	.4 74.0	80.4	67 68	1.0	0.617 0	0.0	1.0	0.577 (0.0 67	6 31.8	73.9	80.5 6	5 1. 7 1	.0	0.617 0.0		-	· · ·
,	73	60 60	0/ 68	1.0 0.633 0.0	0 70.	5 24 5 22	.1 15.4 7 76.2	79.4 70.5	/1 73	1.0	0.591	0.0 6	8.4 30 00 29	.0 74.3 6 74.6	0 80.1 5 70 0	08 69	1.0	0.65 0	0.0	1.0	0.589 ().0 68	3 30.3 0 287	74.2	80.2 0 70.0 6	/ 1. 2 1	0.0	0.65 0.0		-	Ö
	75	70	70	1.0 0.666 0.0	0 72	5 22 4 20	., 76.2	79.7	75	1.0	0.614	0.0 6	9.5 20 9.5 27	.2 74.8	, ,9.9 } 79.6	70	1.0	0.667 0).0	1.0	0.614 ().0 08).0 69	5 27.2	74.8	79.6 70) 1	.0	0.667 0.0			le
	76	71	71	1.0 0.683 0.0	0 73.	4 18	.5 77.6	79.8	76	1.0	0.625	0.0 7	0.1 25	.8 75.0) 79.4	71	1.0	0.683 0	0.0	1.0	0.626 (0.0 70	2 25.6	75.1	79.4 7	1 1	.0	0.683 0.0			
	78	72	72	1.0 0.7 0.0	0 74.	3 16	.3 78.2	79.9	78	1.0	0.635	0.0 7	0.7 24	.5 75.6	5 79.4	72	1.0	0.7 0	0.0	1.0	0.638 (0.0 70	9 24.2	75.7	79.5 72	2 1	.0	0.7 0.0			1a ²
	79	73	73	1.0 0.716 0.0	0 75.	3 14	.2 78.8	80.1	79	1.0	0.646	0.0 7	1.3 23	.3 76.1	79.5	73	1.0	0.717 0	0.0	1.0	0.65 (0.0 71	5 22.8	76.2	79.6 7.	3 1	.0	0.717 0.0			4ta
$ \rightarrow $	81	74	74	1.0 0.733 0.0	.0 76.	2 12	.0 79.3	80.2	81	1.0	0.656	0.0 7	1.9 21	.9 76.5	5 79.6	74	1.0	0.733 0	0.0	1.0	0.661 (0.0 72	2 21.3	76.8	79.7 74	4 1	.0	0.733 0.0			+
$\langle \rangle$	82	75	75	1.0 0.75 0.0	.0 77.	2 9.8	3 79.7	80.4	82	1.0	0.667	0.0 7	2.5 20	.6 77.0) 79.7	75	1.0	0.75 0	0.0	1.0	0.673 (0.0 72	8 19.8	77.3	79.8 7	5 1	.0	0.75 0.0			(\rightarrow)
(ϕ)	+	5-003530-L0 PN910-70 LAB*la0, YN=0%, XYZnw=0.0, 0.0, 0.0, 84.2, 88.6, 96.5, LAB*nw=0.0, 0.0, 0.0, 95.4, 0.0, 0.0 output: sRGB standard device; no separation, D65, side 6/29													$\left(\left(\leftrightarrow \right) \right)$																
$\forall \mathcal{V}$	/				TUE	3-pi	øvep	lansj	je PN	191; f	arbe	toner	lan:	H*₫	=K0	UYd		inpu	it: <i>r</i> {	gb/	cmyk	->1	·gb _ḍ							\setminus	$\forall \forall l$
					prøv	/epl	ansje	ıntø	ilge l	JIN 3	3387.	2, 3D	=0, (1e=0,	, sRC	ЪВ		outp	ut:	ove	ertøri	ng til	rgb _č			X7					-8
-6				5 003530 F0	(M				r	_			0				L	_			v	_				-0

PN9100S

ուեշ., . 1 5 ۲ų.

M

