	http://130.149.60.45/-farbmetrik/VG28/VG28L0N1. N: Keine 3D-Linearisierung (OL) in Datei (F) oder P				1/4
((4))	Farbschwellen-Formel LABJNDS 1985 (JND = just noticeable difference)		NYAB 1985 (Farbdaten: lineare Beziehu	ng zu CIE 1931)	
Sieh	$\frac{\Delta E_{NND}^* = Y_0 \left[(\Delta Y)^2 + (a_0 \Delta a^n \cdot Y)^2 + (b_0 \Delta b^n \cdot Y)^2 \right]^{1/2} / (s + q \cdot Y^2)}{a = x/y} = \frac{a_s - x_s}{a_s} \frac{y_s}{y_s} = \frac{b_s - 0.4 z_s}{b_s} = -0.4 z_s / y_s$	lineare Farbgrößen	Bezeichnung und Zusammenhang mit Normfarbwerten / -anteilen	Bemerkungen	Anv
e ähnl nisch	$a'' = a_n + (a - a_n) / (1 + 0.5 a - a_n)$ $n = D65 \text{ oder A (Umfeld)}$	Normfarbwerte	X, Y, Z		Anwendung für Messung von Display–Ausgabe
iche In	$b'' = b_n + (b - b_n) / (1 + 0.5 b - b_n)$	Buntwert	lineares Buntwertdiagramm (A, B)	n=D65	ngí
ſΩ	$Y = (Y_1 + Y_2) / 2$ $\Delta Y = Y_1 - Y_2$ $\Delta a'' = a_1'' - a_2''$ $\Delta b'' = b_1'' - b_2''$	Rot-Grün	$A = [X/Y - X_n/Y_n]Y = [a - a_n]Y$	(Umfeld)	E E
natei	s = 0.0170 $q = 0.0058$ $g = 1.0$		$= [x/y - x_n/y_n] Y$		56.
ion:	$a_0 = 1,0$ $b_0 = 1,8$ $Y_0 = 1,5$ Umfeld D65	Gelb-Blau	$B = -0.4 [Z/Y - Z_n/Y_n] Y = [b - b_n] Y$		Sur
in the	$a_0 = 1,0$ $b_0 = 1,7$ $Y_0 = 1,0$ Umfeld A		= -0,4 [$z/y - z_n/y_n$] Y $C_{AB} = [A^2 + B^2]^{1/2}$		ig v
#D://	Just noticeable difference (JND) in vier Farbrichtungen	radial	$C_{AB} = [A^2 + B^2]^{1/2}$		g g
/ww	$\Delta Y = \text{const} \left(s + q \cdot Y^g \right) / Y_0$ in Leuchtdichte–Richtung WN	Farbartwert	lineare Farbtafel (a, b)	vergleiche lineare	Dis
¥.E	$\Delta a'' \cdot Y = \text{const} (s + q \cdot Y^g) / (Y_0 \cdot a_0)$ in Farbartrichtung RG	Rot-Grün	a = X/Y = x/y	Zapfensättigung	pla
9.60 ps.b	$\Delta b'' \cdot Y = \text{const} \left(s + q \cdot Y^g \right) / \left(Y_0 \cdot b_0 \right)$ in Farbartrichtung YB	Gelb-Blau	b = -0.4 [Z/Y] = -0.4 [z/y]	L/(L+M)=P/(P+D)	Y.
).45, am.	Δc_{ab} "·Y= const (s + q·Y ²)/(Y ₀ ·[a ₀ ² +b ₀ ²] ^{1/2}) in jede Farbartrichtung c_{ab}	radial	$c_{ab} = [(a - a_n)^2 + (b - b_n)^2]^{1/2}$	S/(L+M)=T/(P+D)	3sn v
'~fa de o	6-00000-L0 VG200-IN Farbschwellen-Formel YCHJNDS 1996 fär alle Farben o&oc, N&W	0-000030-L0	E 1976 (Farbdaten: nichtlineare Beziehu	VG281-3N	abe
rbn			Name und Zusammenhang mit	Bemerkungen	
htt.	$\Delta E_{\rm JND}^* = Y_0 \left[\left(\Delta Y_{\rm eff} \right)^2 + \left(\Delta c_{\rm ab} \cdot Y_{\rm eff} \right)^2 \right]^{1/2} / \left(s + q \cdot Y_{\rm eff} \right)^{\rm t}$		Normfarbwerten und -anteilen		3
ψ./ - -	$Y_{\text{eff}} = Y \cdot [1 - p_{\text{c,o}} \cdot (1 - Y_{\text{o}} / Y_{\text{n}})]; Y_{\text{o}} = \text{Normfarbwert } Ostwald\text{-Farbe}$	Helligkeit	$L^* = 116 (Y/100)^{1/3} - 16 (Y > 0.8)$	CIELAB 1976	ì
13 G	$a = x/y$ $a_n = x_n/y_n$ $b = -0.4 z/y$ $b_n = -0.4 z_n/y_n$ $Y_n = 100$		Näherung: $L = 100 (Y/100)^{1/2,4} (Y > 0)$,
G28/\	$c_{ab} = [a_0^2 (a - a_n)^2 + b_0^2 (b - b_n)^2]^{1/2}$ n = D65 oder A (Umfeld)	Buntheit	Näherung: $L^*=100 (Y/100)^{1/2,4} (Y>0)$ nichtlineare Transformation der Buntwerte A, B	0	
'G28/VG2 130.149.6	$\begin{aligned} c_{ab} &= [a_0^{\ 2}(a-a_n)^2 + b_0^{\ 2}(b-b_n)^2]^{1/2} & \text{n} = \text{D65 oder A (Umfeld)} \\ Y &= (\ Y_1 + Y_2) \ / \ 2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \end{aligned}$	Buntheit	Näherung: $L^*=100 \ (Y/100)^{1/2,4} \ (Y>0)$ nichtlineare Transformation der Buntwerte A, B $a^*=500 \ [\ (X/X_p)^{1/3} - (\ Y/Y_p)^{1/3} \]$		
G28/VG28.F	$\begin{split} c_{ab} &= [a_0^{-2}(a-a_b)^2 + b_0^{-2}(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1 + Y_2)/2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \\ p_{co} &= c_{ab}/c_{aboc}; p_{coe} = c_{ab}/c_{aboc} & \text{s = 0,0170} & \text{q = 0,0058} & \text{t = 1,0} \end{split}$	Buntheit A	Näherung: $L^*=100 (Y/100)^{1/2,4} (Y>0)$ nichtlineare Transformation der Buntwerte A, B	0	
G28/VG28.HTN 130.149.60.45/~1	$\begin{aligned} c_{ab} &= [a_0^{\ 2}(a-a_n)^2 + b_0^{\ 2}(b-b_n)^2]^{1/2} & \text{n} = \text{D65 oder A (Umfeld)} \\ Y &= (\ Y_1 + Y_2) \ / \ 2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \end{aligned}$	Buntheit A	Näherung: $L^*=100 \ (Y/100)^{1/2,4} \ (Y>0)$ nichtlineare Transformation der Buntwerte A, B $a^*=500 \ [\ (X/X_n)^{1/3} - (Y/Y_n)^{1/3}\]$ $=500 \ (a^*-a_n^*) \ Y^{1/3}$	CIELAB 1976	
'G28/VG28.HTM 130.149.60.45/~farb	$\begin{split} c_{ab} &= [a_0^{-2}(a-a_b)^2 + b_0^{-2}(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1 + Y_2)/2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \\ p_{co} &= c_{ab}/c_{aboc}; p_{coe} = c_{ab}/c_{aboc} & \text{s = 0,0170} & \text{q = 0,0058} & \text{t = 1,0} \end{split}$	Buntheit z Rot-Grün de Gelb-Blau de	Näherung: $L^{*}=100 (Y/100)^{1/2-\delta} (Y>0)$ nichtlineare Transformation der Buntwerte A, B $a^{*}=500 [(X/X_{\rm B})^{1/3} - (Y/Y_{\rm B})^{1/3}]$ $=500 (a^{*}-a_{\rm h}^{*})Y^{1/3}$ $b^{*}=200 [(Y/Y_{\rm B})^{1/3} - (Z/Z_{\rm B})^{1/3}]$	CIELAB 1976	
'G28/VG28.HTM 130.149.60.45/~farbme	$\begin{split} c_{ab} &= [a_0^{\ 2}(a-a_b)^2 + b_0^2(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1 + Y_2)/2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \\ p_{co} &= c_{ab}/c_{ab,o}; p_{coc} = c_{ab}/c_{ab,oc} & \text{s = 0,0170} & \text{q = 0,0058} & \text{t = 1,0} \\ a_0 &= 1,0 & b_0 = 1,8 & Y_0 = 1,5 & \text{Umfeld D65} \end{split}$	Buntheit n Rot-Grün c Gelb-Blau l radial C Farbart n	Näherung: $L^*=100 \ (Y/100)^{1/2,4} \ (Y>0)$ nichtlineur Transformation der Buntverte A, B $a^*=500 \ (X/X_n)^{1/3} - (Y/Y_n)^{1/3} \]$ $=500 \ (a^*-a_n^*) \ Y^{1/3}$ $b^*=200 \ ((Y/Y_n)^{1/3} - (Z/Z_n)^{1/3} \]$ $=500 \ (b^*-b_n^*) \ Y^{1/3}$ $C^*_{ab} = [a^{a^2} + b^{a^2}]^{1/2}$	CIELAB 1976 CIELAB 1976 n=D65 (Umfeld) vergleiche log	
'G28/VG28.HTM 130.149.60.45/~farbmetrik	$\begin{split} c_{ab} &= [a_0^{\ 2}(a-a_b)^2 + b_0^2(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1 + Y_2)/2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \\ p_{Cab} &= c_{ab}/c_{ab,0}; p_{Cac} = c_{ab}/c_{ab,oc} & \text{s = 0,0170} & \text{q = 0,0058} & \text{t = 1,0} \\ a_0 &= 1,0 & b_0 = 1,8 & Y_0 = 1,5 & \text{Umfeld D65} \\ a_0 &= 1,0 & b_0 = 1,7 & Y_0 = 1,0 & \text{Umfeld A} \end{split}$	Buntheit n Rot-Grün c Gelb-Blau l radial C Farbart n	Näherung: $L^*=100 \ (Y/100)^{1/2.4} \ (Y>0 \ \text{michilinear Transformation der Buntverte A, B}$ $a^*=500 \ (X/X_n)^{1/3} - (Y/Y_n)^{1/3} \]$ $=500 \ (a^*-a_n^*) \ Y^{1/3} \]$ $b^*=200 \ ((Y/Y_n)^{1/3} - (Z/Z_n)^{1/3} \]$ $=500 \ (b^*-b_n^*) \ Y^{1/3} \ C^*a_n^* = [a^*+b^*]^{1/2} \ \text{michilinear Transfor der Farbarten } x'y, z'y$ $a^*=(1/X_n)^{1/3} \ (x/y)^{1/3} \ $	CIELAB 1976 CIELAB 1976 n=D65 (Umfeld) vergleiche log Zapfensättigung	
'G28/VG28.HTM 130.149.60.45/~farbmetrik	$\begin{aligned} c_{ab} &= [a_0^{-2}(a-a_b)^2 + b_0^{-2}(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1 + Y_2)/2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \\ p_{c,o} &= c_{ab}/c_{ab,oc}; p_{c,oc} &= c_{ab}/c_{ab,oc} & \text{s = 0,0170} \text{q = 0,0058} \text{t = 1,0} \\ a_0 &= 1,0 & b_0 &= 1,8 Y_0 &= 1,5 \text{Umfeld D65} \\ a_0 &= 1,0 & b_0 &= 1,7 Y_0 &= 1,0 \text{Umfeld A} \\ \text{Just noticeable difference aller komplemeantiarer (c) Farben o.c.o., N&W} \\ (a_0 - a_a)Y_{o=1}(a_{oc} - a_{oc})Y_{oc}; (b_o - b_a)Y_{oc}; (c_{oc} - b_a)Y_{oc}; c_{ab,o}Y_{oc} - c_{ab,o}Y_{oc} \\ \Delta Y_{eff} &= \text{const} \left(s + q \cdot Y_{eff} \right)^{1}/Y_0 \text{in Leuchtdichte-Richtung WN} \end{aligned}$	Buntheit s Rot-Grün c Gelb-Blau l radial C Farbart s Rot-Grün c	Naherung: $L \approx 100 (Y/100)^{1/2/4} (Y > 0)$ witchtlinear Transformation der Buntwerte A, B $a^* = 500 [(X/X_0)^{1/3} - (Y/Y_0)^{1/3}]$ $= 500 (a^* - a_n^*) Y^{1/3}$ $b^* = 200 [(Y/Y_0)^{1/3} - (Z/Z_0)^{1/3}]$ $= 500 (b^* - b_n^*) Y^{1/3}$ $C^*_{ab} = [a^{a^*} + b^{a^*}]^{1/2}$ $C^*_{ab} = [a^{a^*} + b^{a^*}]^{1/3}$ $= (1/X_n)^{1/3} (x/y)^{1/3}$ $= 0.2191 (x/y)^{1/3}$ für 1055	CIELAB 1976 CIELAB 1976 n=D65 (Umfeld) vergleiche log Zapfensättigung log[L/(L+M)]	
Siehe ähnliche Dateien: http://130.149.60.45/~farbmetrik/VG28/VG28.HTM Technische Information: http://www.ps.bam.de oder http://130.149.60.45/~farbmetrik	$\begin{aligned} c_{ab} &= [a_0^{-2}(a-a_b)^2 + b_0^{-2}(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1 + Y_2)/2 & \Delta Y = Y_1 - Y_2 & \Delta a = a_1 - a_2 & \Delta b = b_1 - b_2 \\ p_{co} &= c_{ab}/c_{ab,oc}; p_{coc} &= c_{ab}/c_{ab,oc} & \text{s = 0,0170} \text{q = 0,0058} \text{t = 1,0} \\ a_0 &= 1.0 & b_0 &= 1.8 Y_0 &= 1.5 \text{Umfeld D65} \\ a_0 &= 1.0 & b_0 &= 1.7 Y_0 &= 1.0 \text{Umfeld A} \end{aligned}$ Just noticeable difference aller komplemaentiärer (c) Farben $o\&oc$, $N\&W$ $(a_0 - a_a)Y_{oo} = (a_o - a_a)Y_{ooc} (b_0 - b_a)Y_{oo} (b_o - b_a)Y_{ooc} c_{ab,o}Y_{ooc} c_{ab,o}Y_{ooc} \Delta V_{eff} & = \text{const} \left(s + \mathbf{q} \cdot Y_{eff}^*\right)^2/Y_0 \text{in Leuchtdichte-Richtung } W$ $\Delta c_{ab}^* \cdot Y_{eff} &= \text{const} \left(s + \mathbf{q} \cdot Y_{eff}^*\right)^2/Y_0 \text{in indee Farbattrichtung } C_{ooc} \end{aligned}$	Buntheit s Rot-Grün c Gelb-Blau l radial C Farbart s Rot-Grün c	Näherung: $L^*=100 \ (Y/100)^{1/2.4} \ (Y>0 \ \text{michilinear Transformation der Buntverte A, B}$ $a^*=500 \ (X/X_n)^{1/3} - (Y/Y_n)^{1/3} \]$ $=500 \ (a^*-a_n^*) \ Y^{1/3} \]$ $b^*=200 \ ((Y/Y_n)^{1/3} - (Z/Z_n)^{1/3} \]$ $=500 \ (b^*-b_n^*) \ Y^{1/3} \ C^*a_n^* = [a^*+b^*]^{1/2} \ \text{michilinear Transfor der Farbarten } x'y, z'y$ $a^*=(1/X_n)^{1/3} \ (x/y)^{1/3} \ $	CIELAB 1976 CIELAB 1976 n=D65 (Umfeld) vergleiche log Zapfensättigung	
G28/VG28.HTM 130.149.60.45/~farbmetrik	$\begin{split} c_{ab} &= [a_0^{-2}(a-a_b)^2 + b_0^{-2}(b-b_a)^2]^{1/2} & \text{n = D65 oder A (Umfeld)} \\ Y &= (Y_1+Y_2)/2 & \Delta Y = Y_1-Y_2 \Delta a = a_1-a_2 \Delta b = b_1-b_2 \\ p_{c,o} &= c_{ab}/c_{ab,oi}, p_{c,oc} = c_{ab}/c_{ab,oc} & \text{s = 0,0170} \text{q = 0,0058} \text{t = 1,0} \\ a_0 &= 1,0 b_0 = 1,8 Y_0 = 1,5 \text{Umfeld D65} \\ a_0 &= 1,0 b_0 = 1,7 Y_0 = 1,0 \text{Umfeld A} \end{split}$ Just noticeable difference aller komplemaentiirer (c) Farben $oscoc$, $Nocation W$ ($a_0-a_0Y_0=(a_{oc}-a_0Y_{oc})$) $(b_0-b_0Y_0=(b_{oc}-b_0Y_{oc})$	Buntheit z Rot-Grün d Gelb-Blau l radial d Farbart z Rot-Grün d Gelb-Blau l	Näherung: $L^*=100 \ (Y/100)^{1/2/4} \ (Y>0)$ $L^*=100 \ (Y/100)^{1/2/4} \ (Y>0)$ $L^*=100 \ (Y/X_0)^{1/3} $	CIELAB 1976 CIELAB 1976 n=D65 (Umfeld) vergleiche log Zapfensämigung log[L/(L+b/l)] = log[P/(P+D)]	