http://130.149.60.45/~farbmetrik/SN87/SN87L0N1.TXT /.PS; start outpu

Equations: colorimetric data transfer from $r g b_{d}$ to $n c e^{*}{ }_{d}$ data and $L C H^{*}{ }_{d}$ data

Given: $r g b_{\mathrm{d}}$ device colour data of any colour $r g b_{\mathrm{d}}=l a b^{*} r g b_{\mathrm{d}}$ and of 48 step colour circle $j=0$ to 47

$\boldsymbol{r g} b_{\mathrm{Md}, \mathrm{j}}$ and CIELAB data $L^{*} \mathrm{Md}_{\mathrm{M}, \mathrm{j}}, \boldsymbol{C}^{*}{ }_{\mathrm{ab}, \mathrm{Md.j},}, \boldsymbol{h}_{\mathrm{ab}, \mathrm{Md}, \mathrm{j}}=\boldsymbol{L C H}{ }^{*} \mathrm{Md,j}$
Aim: calculate nce ${ }_{\mathrm{d}}$ with $\left(0<=n^{*}{ }_{\mathrm{d}}, c^{*}{ }_{\mathrm{d}}, e^{*}{ }_{\mathrm{d}}<=1\right)$ (similar to NCS data) and $\boldsymbol{L C H}{ }^{*}{ }_{\mathrm{a}, \mathrm{d}}$ data of the device colour Data of a given device (d) colour
relative chroma of the device colour
relative blackness of the device colour relative triangle lightness of the device colour relative red-green chroma in 6×60 degree system s relative yellow-blue chroma in 6×60 degree system s hue angle in 6×60 degree system s
hue number in 6x60 degree system s
CIELAB hue angle in device system adapted CIELAB $L C H^{*}{ }_{d}$ data of maximum colour M_{d}

$c{ }_{\mathrm{d}}=\max \left[r g b_{\mathrm{d}}\right]-\min \left[r g b_{\mathrm{d}}\right]$
relative blackness of the elementary colour relative triangle lightness of the elementary colour relative red-green chroma in 4×90 degree system s
relative yellow-blue chroma in 4×90 degree system s hue angle in 4×90 degree system s
hue number in 4×90 degree system s
CIELAB hue angle in elementary system
CIELAB $L C H^{*}$ e data of maximum colour M_{e}
relative lightness of maximum colour M_{c} relative lightness of the elementary colour CIELAB $L C H^{*}$ c data of the elementary colour
Equations: colorimetric data transfer from $\mathrm{rgb}_{\mathrm{e}}$ to $\mathrm{nce}^{*}{ }_{\mathrm{c}}$ data and $\mathrm{LCH}^{*}{ }_{\mathrm{e}}$ data
Given: $r g b_{c}$ elementary colour data of any colour $r g b_{c}=l a b^{*} r g b_{c}$ and of 48 step colour circle $j=0$ to 47
$r g b_{\mathrm{Mc}, \mathrm{j}}$ and CIELAB data $L^{*}{ }_{\mathrm{Mc}, \mathrm{j}}, C^{*}{ }_{\mathrm{ab}, \mathrm{Mc}, \mathrm{j},}, \boldsymbol{h}_{\mathrm{ab}, \mathrm{Mc}, \mathrm{j}}=\boldsymbol{L C H}{ }^{*} \mathrm{Mc}, \mathrm{j}$
Aim: calculate $n c e^{*}{ }_{\mathrm{e}}$ with ($0<=n^{*}{ }_{\mathrm{e}}, c^{*}{ }_{\mathrm{e}}, e^{*}{ }_{\mathrm{e}}<=1$) (similar to NCS data) and $L C H^{*}{ }_{\mathrm{e}}$ data of elementary colour Data of a give elementary (e) colour
Data of a give elementary (e) colative chroma of the elementary colour

CIELAB hue angle in elementary system
$c^{*}{ }_{c}=\max \left[r g b_{c}\right]-\min \left[r g b_{c}\right]$
$n^{*}{ }_{\mathrm{c}}=1-\max \left[\mathrm{rg} b_{\mathrm{c}}\right]$
$t^{*}{ }_{\mathrm{c}}=1-n^{*}{ }_{\mathrm{e}}-0,5 c^{*}{ }_{\mathrm{c}}$
a^{*} rs,e $=r_{\mathrm{e}} \cos (0)+g_{\mathrm{e}} \cos (180)$
$b^{*} \mathrm{rs}, \mathrm{e}=r_{\mathrm{e}} \sin (0)+g_{\mathrm{e}} \sin (180)+b_{\mathrm{e}} \sin (270)$
$h_{\mathrm{ab}, \mathrm{s}, \mathrm{e}}=\arctan \left[b^{*}{ }_{\mathrm{rs}, \mathrm{e}} / a^{*}{ }_{\mathrm{rs}, \mathrm{e}}\right] \quad\left(0<=h_{\mathrm{ab}, \mathrm{s}, \mathrm{e}}=360\right) \quad$ (6
$e^{*}{ }_{\mathrm{c}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{d}} / 360 \quad\left(0<=e^{*} \mathrm{e}^{<=1}\right)$
$h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}}=$ function $\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{e}}\right] \quad$ (with table/equations) (8)
$L^{*} \mathrm{Me}=$ function $\left[h_{\mathrm{ab}, \mathrm{e}}\right] \quad$ (with table/equations) (9)
$C^{*}{ }_{\mathrm{ab}, \mathrm{Mc}}=$ function $\left[h_{\mathrm{ab}, \mathrm{e}}\right] \quad$ (with table/equations)(10)
$h_{\mathrm{ab}, \mathrm{Me}}=h_{\mathrm{ab}, \mathrm{c}}$
$l^{*} \mathrm{Me}=\left[L^{*} \mathrm{Me}^{\left.-L^{*} \mathrm{Ne}\right] /\left[L^{*} \mathrm{We}-L^{*} \mathrm{Ne}\right]}\right.$
$l^{*}{ }_{\mathrm{c}}=t^{*}{ }^{2}+l^{*} \mathrm{Mc}{ }^{c^{*}}{ }^{\mathrm{e}}+0,5 c^{*}{ }_{\mathrm{e}}$
$L^{*}{ }_{\mathrm{e}}=L^{*} \mathrm{e}\left[L^{*} \mathrm{We}-L^{*} \mathrm{Ne}\right]+L^{*} \mathrm{Ne}$
$C^{*}{ }_{\mathrm{ab}, \mathrm{e}}=c^{*}{ }_{\mathrm{e}} C^{*}{ }_{\mathrm{ab}, \mathrm{Me}}$
(15)

Equations: colorimetric data transfer from $r g b_{\mathrm{e}}$ to $n c e^{*}{ }_{\mathrm{e}}$ data and $\mathrm{LCH}^{*}{ }_{\mathrm{a}, \mathrm{e}}$ data

Equations: colorimetric data transfer from $r g b_{d}$ to $n c e^{*}{ }_{d}$ data and $L C H^{*}{ }_{\text {a,d }}$ data
Given: $r g b_{\mathrm{d}}$ device colour data of any colour $r g b_{\mathrm{d}}=l a b^{*} r g b_{\mathrm{d}}$ and of 48 step colour circle $j=0$ to 47
${ }^{r g} b_{\text {Md, } \mathrm{j}}$ and adapted CIELAB data $L^{*} \mathrm{Md}, \mathrm{j}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Md}, \mathrm{j},} \boldsymbol{h}_{\mathrm{ab}, \mathrm{a}, \mathrm{Md}, \mathrm{j}}=L C H^{*}{ }_{\mathrm{a}, \mathrm{Md}, \mathrm{j}}$
Aim: calculate $n c e^{*}{ }_{\mathrm{d}}$ with $\left(0<=n^{*}{ }_{\mathrm{d}} c^{*}{ }_{\mathrm{d}}, e^{*}{ }_{\mathrm{d}}<=1\right)$ (similar to NCS data) and $L C H^{*}{ }_{\mathrm{a}, \mathrm{d}}$ data of the device colour Data of a given device (d) colour
relative chroma of the device colour
relative blackness of the device colour
relative triangle lightness of the device colour relative red-green chroma in 6×60 degree system s relative yellow-blue chroma in 6×60 degree system s
hue angle in 6x60 degree system s
hue number in 6x60 degree system s
CIELAB hue angle in device system
adapted CIELAB $L C H^{*}$ a,d data of maximum colour M_{d}
relative lightness of maximum colour M_{d}
relative lightness of the device colour
adapted CIELAB LCH * a,d data of the device colour

$c^{*}{ }_{\mathrm{d}}=\max \left[r g b_{\mathrm{d}}\right]-\min \left[r g b_{\mathrm{d}}\right]$	
$n^{*}{ }_{\mathrm{d}}=1-\max \left[\mathrm{rg} b_{\mathrm{d}}\right]$	
$t^{*} \mathrm{~d}=1-n^{*} \mathrm{~d}-0,5 c^{*} \mathrm{~d}$	
$a^{*}{ }_{\mathrm{rs}, \mathrm{d}}=r_{\mathrm{d}} \cos (30)+g_{\mathrm{d}} \cos (150)$	
$b^{*}{ }_{\mathrm{rs}, \mathrm{d}}=r_{\mathrm{d}} \sin (30)+g_{\mathrm{d}} \sin (150)+b_{\mathrm{d}} \sin (270)$	
$\begin{array}{ll} h_{\mathrm{ab}, \mathrm{~s}, \mathrm{~d}}=\arctan \left[b_{\mathrm{rs,d}}^{*} / a_{\mathrm{rs}, \mathrm{~d}}^{*}\right. & \left(0<=h_{\mathrm{ab}, \mathrm{~d} \mathrm{~d}}=360\right) \\ e^{*}{ }_{\mathrm{d}}=h_{\mathrm{ab}, \mathrm{~s}, \mathrm{~d}} / 360 & \left(0<=e^{*}{ }_{\mathrm{d}}<=1\right) \end{array}$	
$h_{\text {ab,a,d }}=$ function $\left[h_{\text {ab,s,d }}\right]$ (with table/equa	
$L^{*} \mathrm{Md}=$ function $\left[h_{\text {ab,a, }, \mathrm{d}]}\right]$ (with table/equations)	
$C^{*}{ }_{\text {ab,a, Md }}=$ function $\left[h_{\text {ab,a,d }}\right]$ (with table/equations) (10)	
$h_{\text {ab,a, Md }}=h_{\text {ab,a,d }}$	
$l^{*} \mathrm{Md}=\left[L^{*} \mathrm{Md}-L^{*} \mathrm{Nd}\right] /\left[L^{*} \mathrm{Wd}-L^{*} \mathrm{Nd}\right]$	
$l^{*}{ }_{\mathrm{d}}=l^{*}{ }_{\mathrm{d}}+l^{*} \mathrm{Md} c^{*}{ }_{\mathrm{d}}+0,5 c^{*} \mathrm{~d}$	
$L^{*}{ }_{\mathrm{d}}=L^{*}{ }_{\mathrm{d}}\left[L^{*} \mathrm{Wd}-L^{*} \mathrm{Nd}\right]+L^{*} \mathrm{Nd}$	
$C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{d}}=c^{*}{ }_{\mathrm{d}} C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Md}}$	(15)

$c^{*}{ }_{\mathrm{e}}=\max \left[\mathrm{rg} b_{\mathrm{e}}\right]-\min \left[r g b_{\mathrm{e}}\right]$
Data of a given elementary (e) colour
relative chroma of the elementary colour
relative blackness of the elementary colour
relative triangle lightness of the elementary colour relative red-green chroma in 4×90 degree system s relative yellow-blue chroma in 4×90 degree system s
hue angle in 4×90 degree system s
hue number in 4×90 degree system s
CIELAB hue angle in elementary system
adapted CIELAB $L C H^{*}{ }_{\mathrm{a}, \mathrm{e}}$ data of maximum colour M_{e}
relative lightness of maximum colour M_{e}
relative lightness of the elementary colour
adapted CIELAB LCH * a,e data of the elementary colour
$n^{*}{ }_{\mathrm{c}}=1-\max \left[r g b_{\mathrm{c}}\right]$
$t^{*}{ }_{\mathrm{c}}=1-n^{*}{ }_{\mathrm{c}}-0,5 c^{*}{ }_{\mathrm{e}}$
$a^{*}{ }_{\mathrm{rs}, \mathrm{e}}=r_{\mathrm{e}} \cos (0)+g_{\mathrm{e}} \cos (180)$
$b^{*} \mathrm{rs}, \mathrm{e}=r_{\mathrm{e}} \sin (0)+g_{\mathrm{e}} \sin (180)+b_{\mathrm{e}} \sin (270)$
$h_{\mathrm{ab}, \mathrm{s}, \mathrm{e}}=\arctan \left[b_{\mathrm{rs,e}}^{*} / a_{\mathrm{rs}, \mathrm{e}}^{*}\right] \quad\left(0<=h_{\left.\mathrm{ab}, \mathrm{s}, e^{<}=360\right) \quad(6)}\right.$ $e^{*}{ }_{\mathrm{e}}=h_{\mathrm{ab}, \mathrm{s}, e^{2}} / 360 \quad\left(0<=e^{*} \mathrm{e}^{<=1}\right)$
$h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}}=$ function $\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{e}]}\right.$ (with table/equations) (8) $L^{*} \mathrm{Mc}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}]} \quad\right.$ (with table/equations) (9) C^{*} ab,a,Me $=$ function $\left[h_{\mathrm{ab}, \mathrm{ace}]}\right.$ (with table/equations)(10) $h_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}}=h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}}$
$l^{*}{ }^{\mathrm{Me}}=\left[L^{*} \mathrm{Me}-L^{*} \mathrm{Ne}\right] /\left[L^{*} \mathrm{We}^{-L^{*}} \mathrm{Ne}\right]$
$l^{*}{ }_{\mathrm{c}}=t^{*}{ }_{\mathrm{e}}+l^{*} \mathrm{Mc} c^{*}{ }_{\mathrm{e}}+0,5 c^{*}{ }_{\mathrm{e}}$
$L^{*}{ }_{\mathrm{c}}=L^{*}{ }_{\mathrm{c}}\left[L^{*} \mathrm{We}-L^{*} \mathrm{Ne}\right]+L^{*} \mathrm{Ne}$
$C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{d}}=c^{*}{ }_{\mathrm{c}} C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Mc}}$
$r g b_{\mathrm{Mc}, \mathrm{j}}$ and adapted CIELAB data $L^{*}{ }_{\mathrm{Me}, \mathrm{j}}, \boldsymbol{C}^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}, \mathrm{j}}, \boldsymbol{h}_{\mathrm{ab}, \mathrm{a}, \mathrm{Mc}, \mathrm{j}}=\boldsymbol{L C H}{ }^{*}{ }_{\mathrm{a}, \mathrm{Me}, \mathrm{j}}$
Aim: calculate $n c e^{*}{ }_{e}$ with $\left(0<=n^{*}{ }_{e} c^{*}{ }_{e} e^{*}{ }^{*} e^{<=1)}\right.$ (similar to NCS data) and $L C H^{*}$ a, c data of elementary colour

