Equations: colorimetric data transfer from $r g b_{\mathrm{e}}$ to $n c e^{*}{ }_{\mathrm{e}}$ data and $L C H^{*}$

Given: $r g b_{\mathrm{e}}$ elementary colour data of any colour $r g b_{\mathrm{e}}=l a b^{*} r g b_{\mathrm{e}}$ and of 48 step colour circle $j=0$ to 47

$\boldsymbol{r g} \boldsymbol{b}_{\mathrm{Me}, \mathrm{j}}$ and adapted CIELAB data $\boldsymbol{L}^{*}{ }_{\mathrm{Me}, \mathrm{j}}, \boldsymbol{C}^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}, \mathrm{j}}, \boldsymbol{h}_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}, \mathrm{j}}=\boldsymbol{L C H}{ }^{*}{ }_{\mathrm{a}, \mathrm{Me}, \mathrm{j}}$
Aim: calculate $\boldsymbol{n c} \boldsymbol{e}^{*}{ }_{\mathrm{e}}$ with $\left(0<=n^{*}{ }_{\mathrm{e}}, c^{*}{ }_{\mathrm{e}}, e^{*}{ }_{\mathrm{e}}<=1\right)$ (similar to NCS data) and $\boldsymbol{L C H}{ }^{*}{ }_{\mathrm{a}, \mathrm{e}}$ data of elementary colour Data of a given elementary (e) colour
relative chroma of the elementary colour relative blackness of the elementary colour relative triangle lightness of the elementary colour relative red-green chroma in 4×90 degree system s relative yellow-blue chroma in 4×90 degree system s hue angle in 4×90 degree system s hue number in 4 x 90 degree system s CIELAB hue angle in elementary system adapted CIELAB $L C H^{*}{ }_{\mathrm{a}, \mathrm{e}}$ data of maximum colour M_{e}
relative lightness of maximum colour M_{e} relative lightness of the elementary colour adapted CIELAB $L C H^{*}$ a,e data of the elementary colour

$$
\begin{align*}
& c^{*}{ }_{\mathrm{e}}=\max \left[r g b_{\mathrm{e}}\right]-\min \left[r g b_{\mathrm{e}}\right] \\
& n{ }_{\mathrm{e}}=1-\max \left[r g b_{\mathrm{e}}\right] \\
& t^{*}{ }_{\mathrm{e}}=1-n^{*}{ }_{\mathrm{e}}-0,5 c^{*} \mathrm{e} \\
& a^{*}{ }_{\text {rs,e }}=r_{\mathrm{e}} \cos (0)+g_{\mathrm{e}} \cos (180) \\
& b^{*}{ }_{\mathrm{rs}, \mathrm{e}}=r_{\mathrm{e}} \sin (0)+g_{\mathrm{e}} \sin (180)+b_{\mathrm{e}} \sin (270) \\
& h_{\mathrm{ab}, \mathrm{~s}, \mathrm{e}}=\arctan \left[b_{\mathrm{rs,e}} / a{ }^{*} \mathrm{rs,e}\right] \quad\left(0<=h_{\mathrm{ab}, \mathrm{~s},}<=360\right) \\
& e^{*}=h_{\mathrm{ab}, \mathrm{~s},} / 360 \\
& h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}}=\text { function }\left[h_{\mathrm{ab}, \mathrm{~s}, \mathrm{e}}\right] \quad \text { (with table/equations) (8) } \\
& L^{*}{ }_{\mathrm{Me}}=\text { function }\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}}\right] \quad \text { (with table/equations) (9) } \\
& C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}}=\text { function }\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}}\right] \quad(\text { with table/equations })(10) \\
& h_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}}=h_{\mathrm{ab}, \mathrm{a}, \mathrm{e}} \tag{11}\\
& l^{*} \mathrm{Me}=\left[L^{*} \mathrm{Me}^{-}-L^{*} \mathrm{Ne}\right] /\left[L^{*} \mathrm{We}^{-}-L^{*} \mathrm{Ne}\right] \tag{12}\\
& l^{*}{ }_{\mathrm{e}}=t^{*}{ }_{\mathrm{e}}+l^{*} \mathrm{Me} c^{*}{ }_{\mathrm{e}}+0,5 c^{*}{ }_{\mathrm{e}} \tag{13}\\
& L^{*}{ }_{\mathrm{e}}=l^{*}{ }_{\mathrm{e}}\left[L^{*}{ }^{*} \mathrm{We}-L^{*} \mathrm{Ne}\right]+L^{*} \mathrm{Ne} \tag{14}\\
& C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{~d}}=c^{*}{ }_{\mathrm{e}} C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{Me}} \tag{15}
\end{align*}
$$

