What is Output Linearization? (For the elemetary hues, see CIE R1–47:2009.) The colour space of a double cone includes 6 colours. The six colours can be the device-dependent device colours (index d): (R, Y, G, B, N, W)d or the device-independent elementary colours (index e): $(R, Y, G, B, N, W)_e$. Elementary red appears neither yellowish nor bluish. The hue angle is $h_{ab,e} = 26$. For example for the *sRGB* colours according to IEC 61966–2–1 it is valid: Device red R_d has the coordinates rgb^*R_d and $LCh^*R_d = (L^*, C^*_{ab}, h_{ab})R_d$ Elementary red R_e has the coordinates rgb^*R_e and $LCh^*R_e = (L^*, C^*ab, h_{ab})R_e$ Corresponding data are given in the following for R_d , R_e , and $W=W_d=W_e$ $rgbw = (1\ 1\ 1)w$ $rgb*_{Rd} = (1\ 0\ 0)_{Rd}$ $LCh*_{Rd} = (50, 100, 40)_{Rd}$ $LCh*W=(L*, C*_{ab}, h_{ab})W = (95, 0, -)W$ $rgb_{Re} = (1\ 0\ 0)_{Re}$ $LCh*_{Re} = (50, 87, 26)_{Re}$ Output Linearization of CIE R1–09:2015 produces for the hue angle $h_{ab,Re} = 26$ the CIELAB data $L^*_{Re} = 50$ and $C^*_{ab,Re} = 87$. These CIELAB data are produced with the device to elementary input data (de) $rgb_{de,Re} = (1\ 0\ 0.26)_{de,Re}$ $G_{\mathbf{e}}$ A calculated table for 360 hue angles includes: $h_{\rm ab}$ LCh*_{de} rgb_{de} 50 87 26 26 1 0 0.26

3-010030-I

SF201-3N