Farbatlas RECS digital und analog für Informationstechnik und Gestaltung auf der Basis von Elementarfarben"

http://www.li.tu-berlin.de/F/FARBIN08.PDF

(29 Seiten, 1 MByte)

Prof. Dr. Klaus Richter, Technische Universität, Berlin

Tel. +49 30 84 50 90 38; Fax +49 30 84 50 90 40

klaus.richter@mac.com

Internet: http://www.ps.bam.de und http://www.li.tu-berlin.de

Dieser Vortrag wurde auf der Tagung FARBINFO am 24. Okt. 2008 gehalten, siehe die URL (34 Seiten, 1 Mbyte)

http://www.li.tu-berlin.de/F/FARBIN08.PDF

Es gibt neue Normen DIN 33872-1 bis 6 (im Druck) über relative Farbwiedergabe mit vielen Prüfvorlagen. Für die Titel und Prüfvorlagen siehe

http://www.ps.bam.de/33872

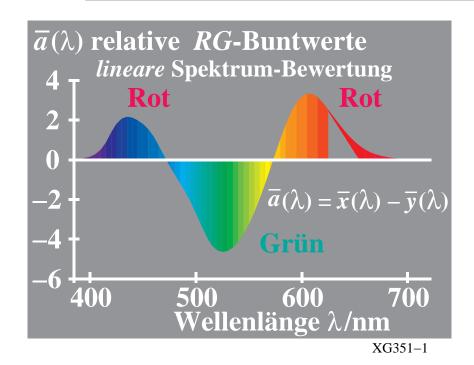
Die Prüfvorlagen sind aus dem Internet frei erhältlich. Die Fragen zur Kennzeichnung der Ausgabe-Eigenschaften auf Monitoren und/oder Druckern befinden sich jeweils auf der letzten Seite.

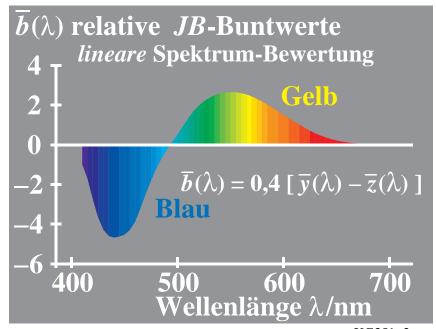
Für der Farbatlas "Relatives Elementar-Farbsystem RECS (REFS)" digital und analog sowie "Prüfvorlagen ähnlich Prüfvorlagen nach ISO/IEC 15775" (insgesamt 36 Seiten) siehe

http://www.ps.bam.de/REFS

Der Farbatlas (36 Seiten) ist im Offsetdruck mit Standard-Offsetfarben auf Standard-Offsetpapier erhältlich (Anfragen an obige Email-Adresse). Er dient als Referenz zum Scannen und zum Vergleich mit Drucker- und Monitor-Ausgaben mit den Prüfvorlagen nach DIN 33872.

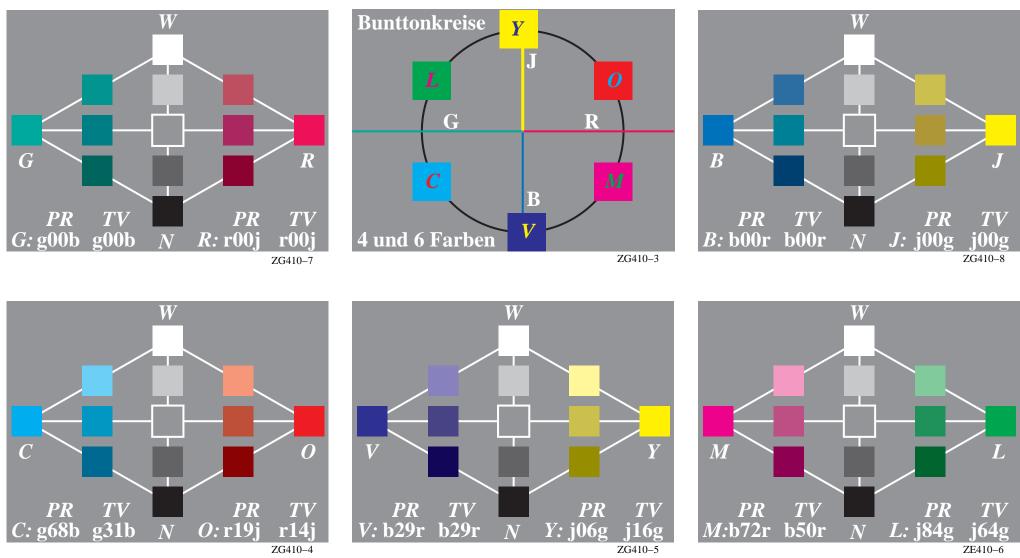
Inhalt des ersten Teils:


- Farbnamen nach ISO/IEC 15775
- Geräte- und Elementarfarben
- Elementarfarben und rgb*-Farbkoordinaten
- Andere relative Farbkoordinaten, zum Beispiel icu*
- Farbdaten in der Farbmetrik und Bildverarbeitung
- Benutzerfreundliche Farbkoordinaten
- Ersatz der Geräte- durch Elementarfarbkoordinaten
- Relatives affines Farbmanagement
- ICC-Farbmanagement nach ISO 15076-1

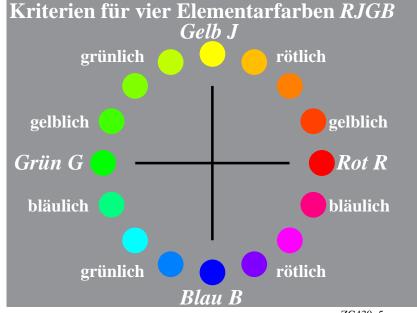

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 3/29

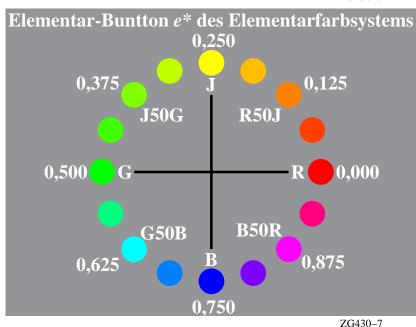
Definition von Elementarfarben und spektrale Bewertung

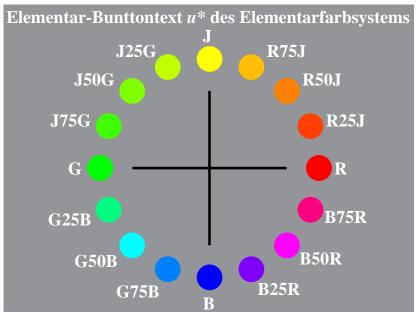
Unbunte Farben	Elementarfarben ''Weder-Noch''-Farben	Reproduktionsfarben Fernsehen (TV), Druck (PR) Photographie (PH)		
fünf unbunte Farben: N Schwarz (franz. noir) D Dunkelgrau Z Zentralgrau H Hellgrau W Weiß	 vier Elementarfarben: R Rot weder gelblich noch bläulich G Grün weder gelblich noch bläulich B Blau weder grünlich noch rötlich J Gelb (franz. jaune) weder grünlich noch rötlich 	 sechs Reproduktionsfarben: C Cyanblau M Magentarot Y Gelb O Orangerot L Laubgrün V Violettblau 		


YG980-3

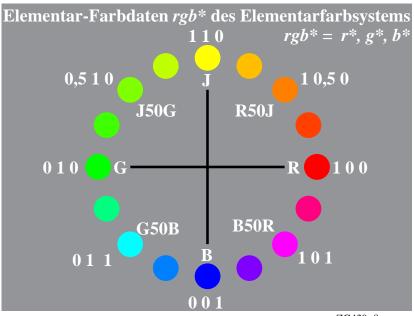
XG351-2


Elementarbunttonkreis und verschiedene Buntton-Ebenen


Farbordungssysteme basieren auf einem Doppelkegel mit kreisförmiger Basis (z. B. Ostwald, NCS). Das Natural Colour System (NCS) benutzt drei Koordinaten ncu^* (relative Schwarzheit n^* , Buntheit c^* , Elementarbunttontext u^*)

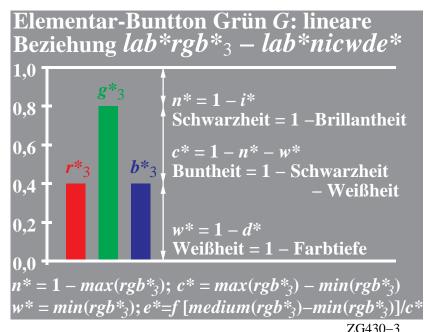

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 5/29

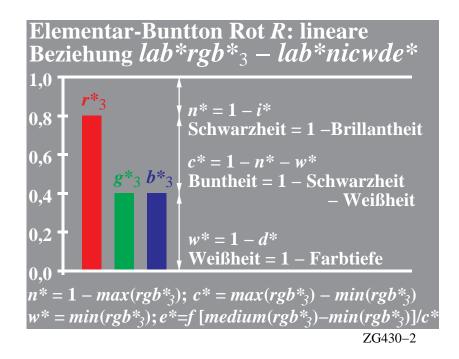
Kriterien zur visuellen Ermittlung der Elementarbunttöne und von drei relativen Gerätefarbdaten

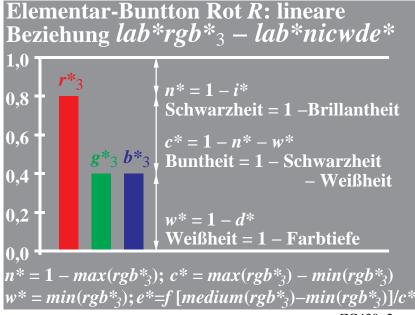


ZG430-5




ZG430-6




ZG430-8

Elementarfabkoordinaten rgb* und Zusammenhang mit Farbkoordinaten nicwe*

ZG430-2

Anwendung von Farbe im täglichen Leben oder in Farbinformations-Technologie

Design, Architektur, Kunst, Industrieprodukte Farbinformations-Technologie **Messung für CIE Normlichtart D65**

Farbordnungssytem; Name und Koordinaten:

RAL Design System (CIELAB)

 $L^*C^*_{ab}h_{ab}$, Helligkeit, Buntheit, Bunttonwinkel

Munsell-Farbsystem

VCH, Helligkeit, Buntheit (Chroma), Bunttontext

Natürliches Farbsystem (NCS)

ncu*: relative Schwarzheit, relative Buntheit relativer Elementarbunttontext

Messung für CIE Lichtarten D65 und D50

Gerätesytemname und Koordinaten:

|Drucker-System (Lichtarten D50 oder D65): cmy, Menge an "Cyan", "Magenta", "Gelb"

Monitor-System (Normlichtart D65): rgb/sRGB, Menge an "Rot", Grün", "Blau"

Keine benutzerfreundlichen Farbkoordinaten Nahezu keine Verbindung zu Farbsystemen

Ziel: definiere benutzerfreundliche Verbindung

Neu: Interpretation der rgb-Farbdaten im Wertebereich 0 bis 1 als Elementarfarbdaten $rgb*_3$

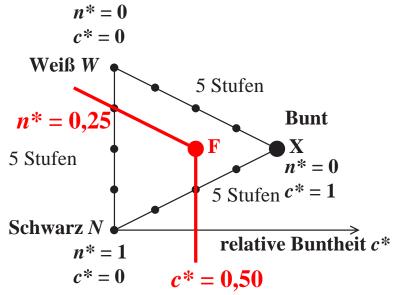
Lineare Beziehungen zwischen relativen und absoluten Koordinaten lab* – LAB* (CIELAB)

$$rgb*_3 - L*a*b*C*_{ab}h_{ab}$$
 (CIELAB)

rgb - cmy, $rgb*_3 - cmy*_3$ ("1-Minus"-Beziehung)

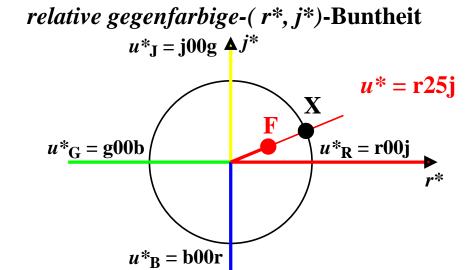
 $rgb*_3 - nce*, rgb*_3 - ncu*$

Relative Koordinaten **lab***: Elementar-Rotheit r^*_3 , -Grünheit g^*_3 , -Blauheit b^*_3 , Schwarzheit n^* Buntheit c^* , Elementar-Bunttontext u^*

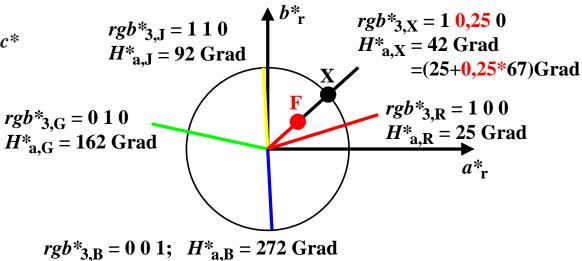

Benutzerfreundliche relative farbmetrische Farbkennzeichnung mit Elementarfarbkoordinaten ncu*

Benutzerfreundliches farbmetrisches Farbkennzeichen ncu* und lineare Beziehung zu drei rgb*3-Daten

n* relative Schwarzheit

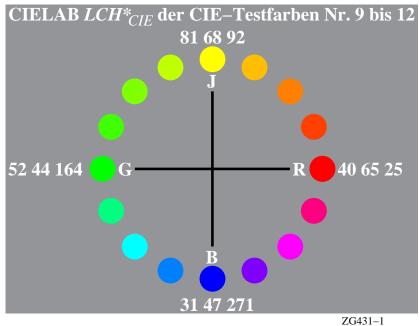

c* relative Buntheit

*u** Elementar-(Ur-)Bunttontext

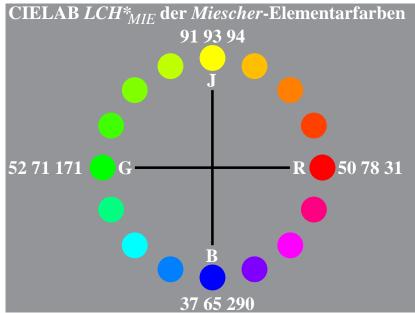


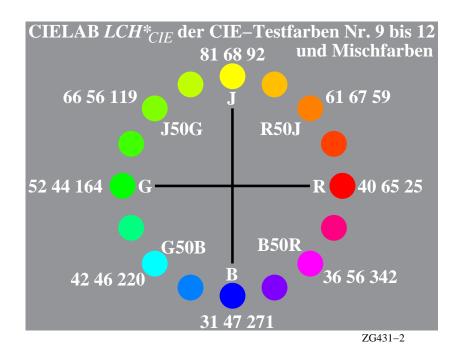
Beispiel für Farbkennzeichen:

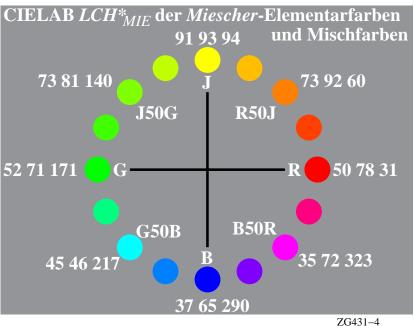
 $ncu^* = 0.25 \ 0.50 \ r25i$

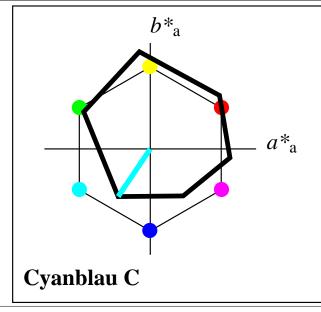


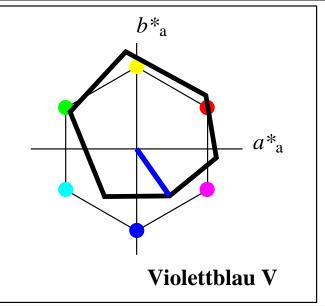
relative CIELAB- (a_{r}^{*}, b_{r}^{*}) -Buntheit



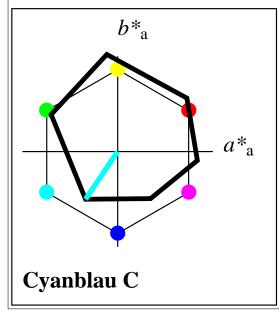

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 9/29

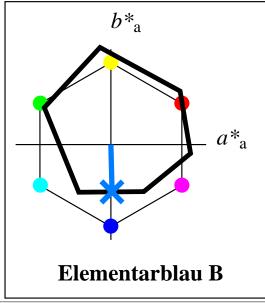

LCH*-Gerätefarbdaten der CIE-Testfarben Nr. 9 bis 12 und Miescher Élementarfarben RJGB

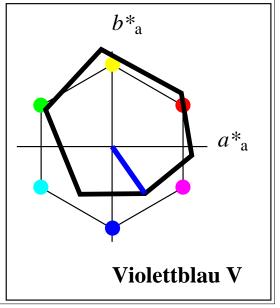




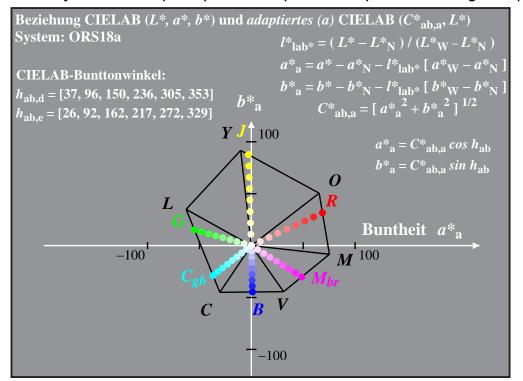
ZG431-3

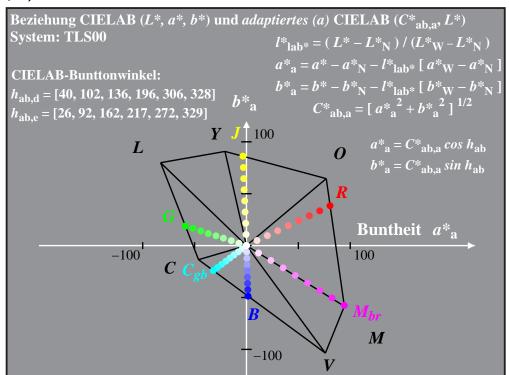

OR	ORS18: adaptierte CIELAB-Daten ORS18: relative Gerätefarbdaten										
	$L^*=L^*_a$	a^*_a	$b*_{a}$	$C*_{ab,a}$	$h*_{ab,a}$	rgb	-> <i>olv</i>	*3	cm ₂	y*3	
O_{M}	a 47.94	65.39	50.52	82.63	38	1.0	0.0	0.0	0.0	1.0	1.0
$ Y_{M} $	a 90.37	-10.26	91.75	92.32	96	1.0	1.0	0.0	0.0	0.0	1.0
$ L_{\mathbf{M}} $	_a 50.9	-62.83	34.96	71.91	151	0.0	1.0	0.0	1.0	0.0	1.0
$ \mathbf{C}_{\mathrm{M}} $	a 58.62	-30.34	-45.01	54.3	236	0.0	1.0	1.0	1.0	0.0	0.0
$ \mathbf{V}_{\mathrm{M}} $	a 25.72	31.1	-44.4	54.22	305	0.0	0.0	1.0	1.0	1.0	0.0
$ M_N $	_{1a} 48.13	75.28	-8.36	75.74	354	1.0	0.0	1.0	0.0	1.0	0.0
$N_{\rm M}$	a 18.01	0.0	0.0	0.0	0	0.0	0.0	0.0	1.0	1.0	1.0
$ W_N $	_{1a} 95.41	0.0	0.0	0.0	0	1.0	1.0	1.0	0.0	0.0	0.0

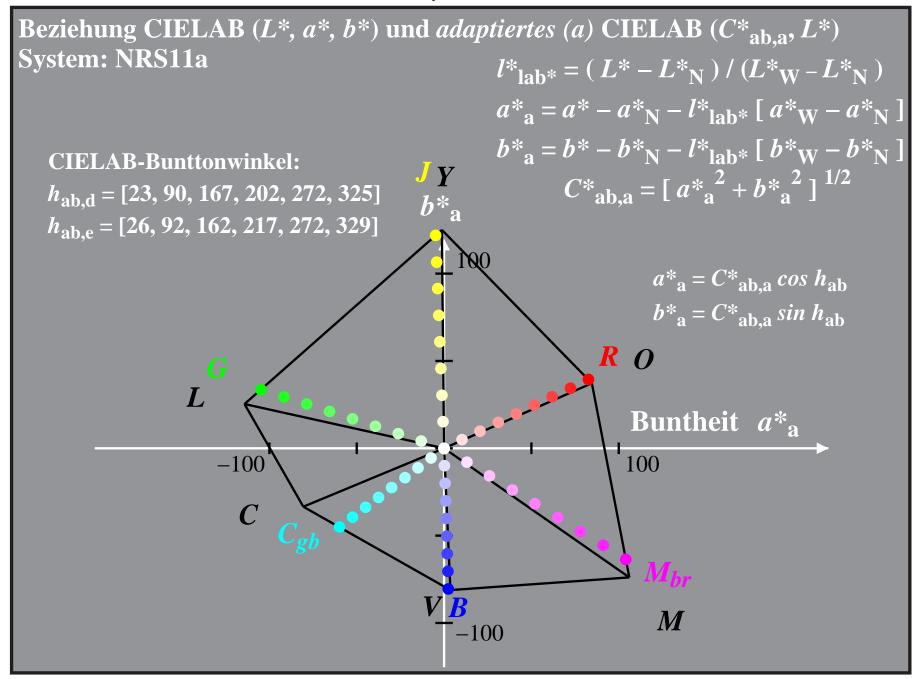


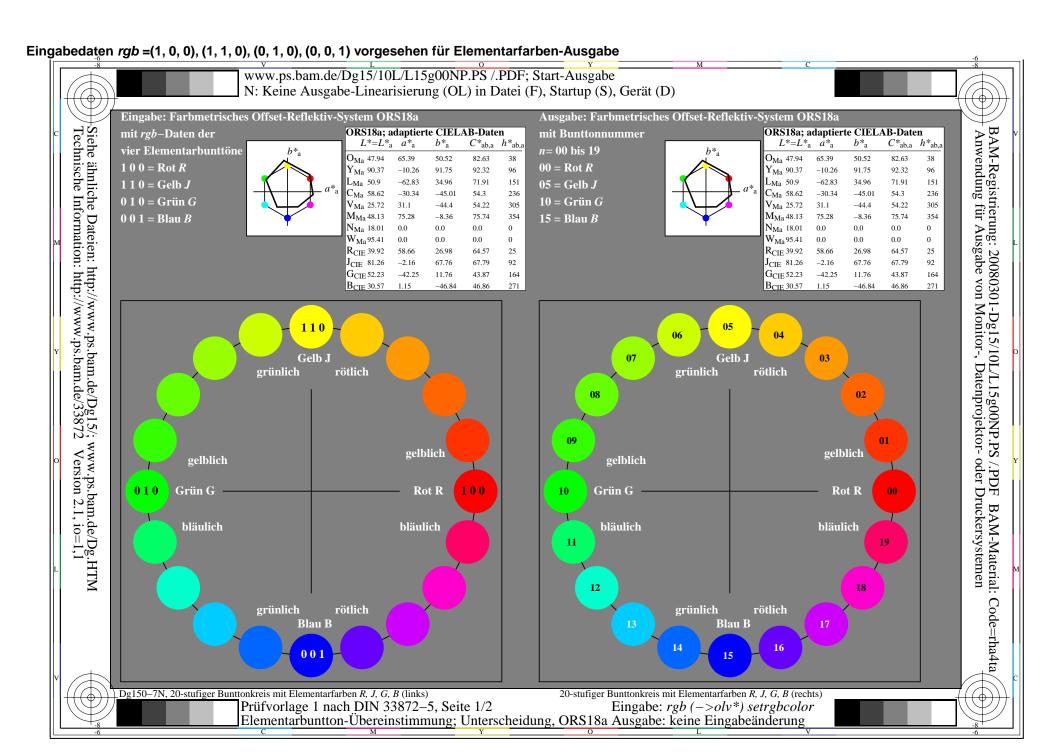


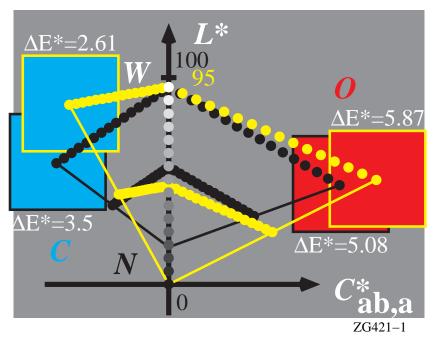
Elementarfarbdaten LCH*, rgb* und Geräte-Farbdaten o/v* des Offset-Reflektiv-System ORS18

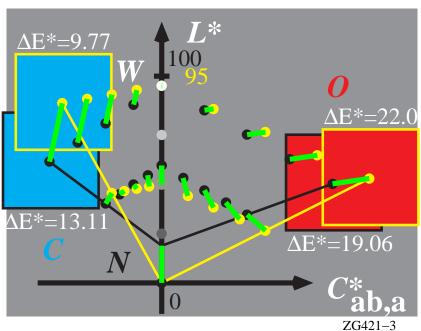

ORS18: adaptierte CIELAB-Daten Elementar- und Gerätefarbdaten							en				
$\ L^*$	$=L*_a$	a^*_a	$b*_{a}$	$C*_{\mathrm{ab,a}}$	$h*_{ab,a}$	rgb	-> rgb)* ₃	$olv*_3$	(Gerä	tedaten)
R	48.0	68.58	31.54	75.48	25	1.0	0.0	0.0	1.0	0.0	0.32
R50J	62.87	38.77	65.02	75.71	59	1.0	0.5	0.0	1.0	0.35	0.0
$\ \mathbf{J}\ $	86.19	-2.8	87.69	87.73	92	1.0	1.0	0.0	1.0	0.9	0.0
J50G	71.17	-35.83	64.13	73.46	119	0.5	1.0	0.0	0.51	1.0	0.0
$\ \mathbf{G}\ $	52.8	-54.82	15.26	56.92	164	0.0	1.0	0.0	0.0	1.0	0.25
G50B	57.25	-36.1	-30.82	47.48	220	0.0	0.5	0.5	0.0	1.0	0.82
$\ \mathbf{B}\ $	41.78	1.1	-44.7	44.72	271	0.0	0.0	1.0	0.0	0.49	1.0
B50R	40.78	60.78	-20.18	64.05	342	0.5	0.0	1.0	0.67	0.0	1.0

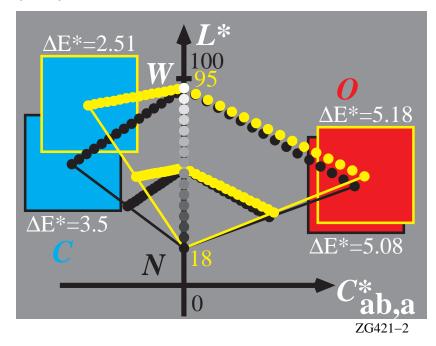


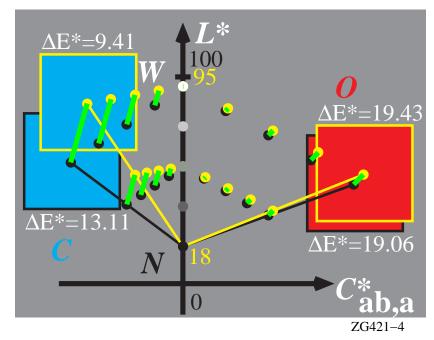

Geräte-Systeme ORS18 (Offset) und TLS00 (CRT-Monitor) im CIELAB-Diagramm (a*, b*)



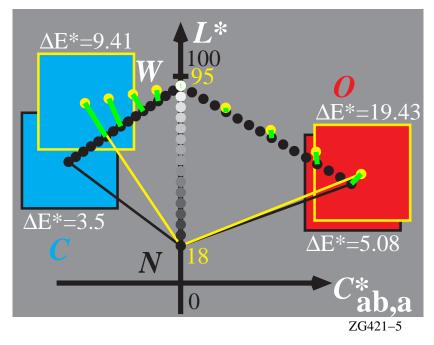

Sechs Gerätesystemfarben OYLCVM (schwarz) für Gerätesyteme **ORS18 (Offsetdruck)** TLS00 (CRT-Fernsehmonitor im Dunkelraum)

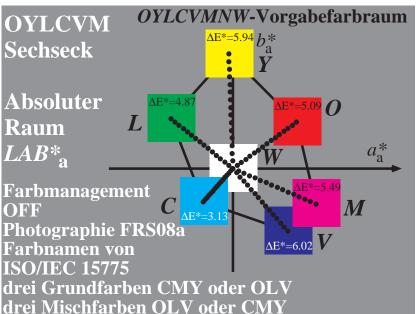

Mischung der Elementar-Bunttöne RJGB (bunt) und der Mittelfarben C_{ab} und M_{br} aus Gerätesystemfarben OYLCVM. Elementar-Bunttonwinkel der CIE-Tetsfarben Nr. 9 bis 12 und des NCS-Farbsystems



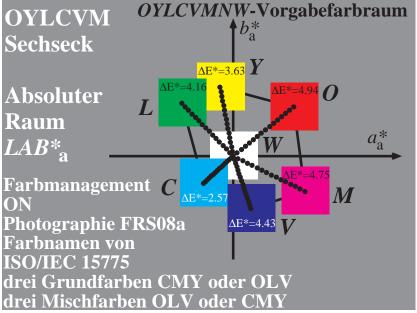


Bunttonebenen für drei Normgeräte ORS18, TLS00, TLS18 (oben) und affines Farbmanagement (unten)

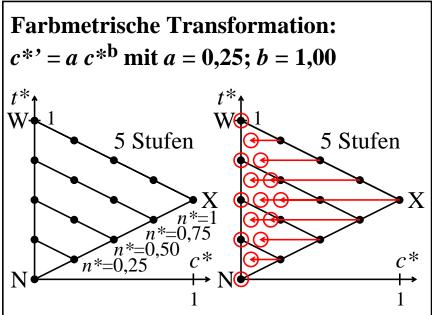




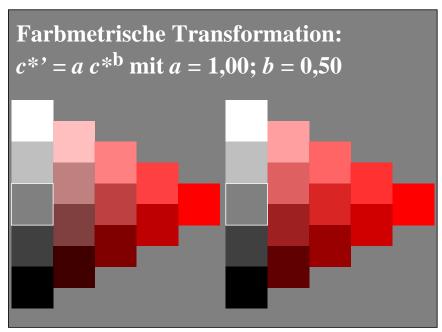




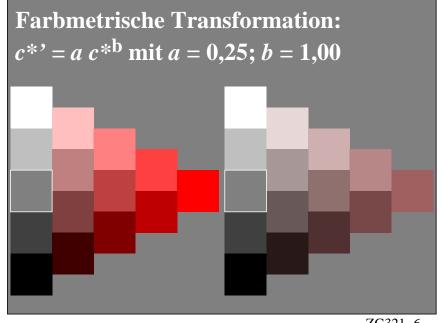
ICC-Farbmanagement nach ISO 15706-1 schneidet Farben ab und reduziert den Farbraum


ZG140-1 ZG140-2

Inhalt des zweiten Teils:


Farb-Workflow

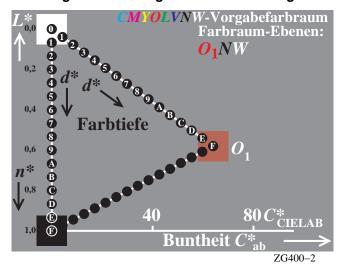
- gleichabständig gestufte Ausgabe in CIELAB für rgb- und äquivalente cmyn-Eingabedaten
- gleiche Ausgabe in CIELAB für äquivalente *rgb* und *cmy0*-Eingabedaten mit *1-minus-Relation*
- buntere und weniger bunte Ausgabe als Option
- Workflow für Druckerausgabe mit PS- und anderen Druckern
- hohe visuelle Effizienz durch Ausgabe-Linearisierung
- hohe Material-Effizienz durch geeignete Farbseparation



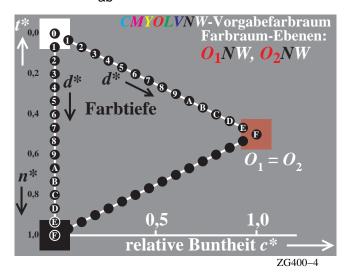
ZG321-5

ZG320-6

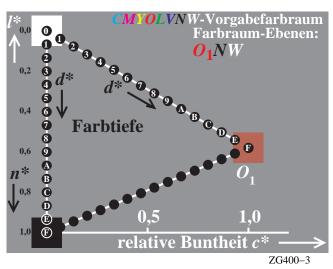
ZG321-6

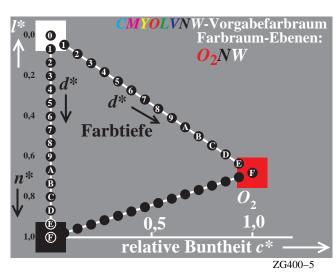

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 20/29

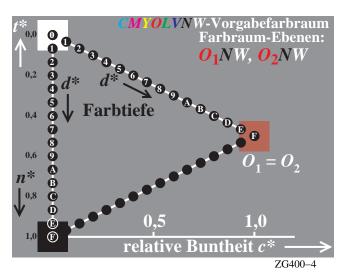
Benutzer-Kennzeichnung der Ausgabe bei rgb-Dateninterpretation als rgb*-Elementarfarbdaten

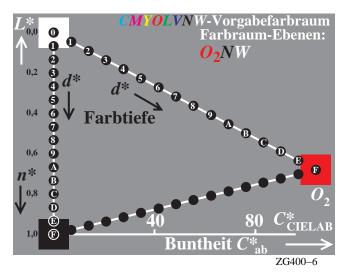

Benutzer-Kennzeichnung der Ausgabe bei rgb -Dateninterpretation als rgb^* Gleichstufige Ausgabe, gleiche Ausgabe, Buntheitsänderung, Glättung									
Ist die Ausgabe	visuell gleichges	stuft für gleichges	stufte Farbdat	en in Eingabe?					
Elementarbuntto	n-Farbausgabe <i>rg</i>	gb^* für vier Eleme	entar-Bunttoneb	enen RJGB					
Farbcode:	rgb cmy0	000k w	LAB* LCH	H* nch* nce*					
5 Stufen:	0 0	0 0	0 0	0 0					
16 Stufen:	0 0	0 0	0 0	0 0					
		alente Eingabe-F							
Elementarbuntto	n-Farbausgabe <i>rg</i>	gb^* für vier Eleme	entar-Bunttoneb	enen RJGB					
Farbcode:	rgb, cmy0	rgbw	rgbLCH*	* rgbnce*					
5 Stufen:	\circ	\circ	0	\bigcirc					
16 Stufen:	Ö	Ö	Ö	Ö					
Existiert eine Option zur Buntheitsänderung für gleichgestufte Eingabedaten?									
Elementarbuntto	n-Farbausgabe <i>rg</i>	gb^* für vier Eleme	entar-Bunttoneb	enen RJGB					
Änderungs-Opti	on: <i>keine Option</i>	weniger bunt	mehr bunt	unbunt					
5 Stufen:	\bigcirc	\bigcirc	\bigcirc	O					
16 Stufen:	0	0	<u> </u>	0					
Existiert eine O	ption für Farbg	lättung für gleich	gestufte Einga	bedaten?					
Elementarbuntto	n-Farbausgabe <i>rg</i>	gb^* für vier Eleme	entar-Bunttoneb	enen RJGB					
Glättungs-Optio	n: <i>keine Option</i>	keine Glättung	Glättung	visuelle Bewertung					
5 Stufen:	\circ	\bigcirc	\circ	Glättung Ja/Nein					
16 Stufen:	0	\circ	\circ	Glättung Ja/Nein					

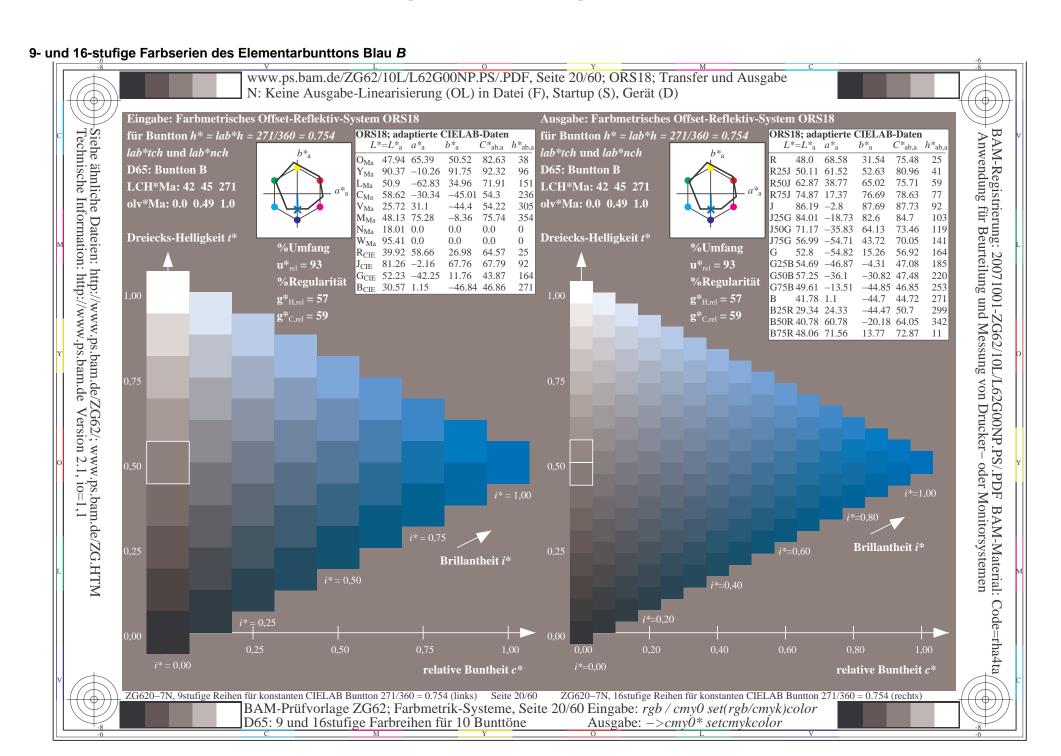
K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 21/29


Relative gleichabständige Farbein- und -ausgabe mit affiner Transformation

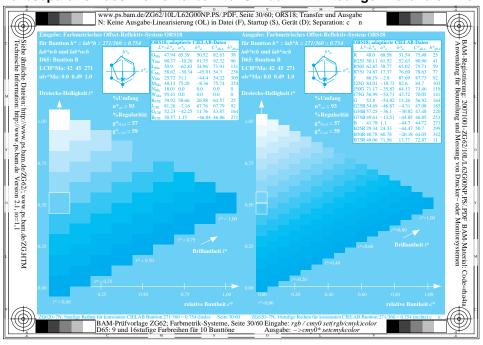

Absoluter CIELAB -Eingabefarbraum: Helligkeit L^* Buntheit C^*_{ab}

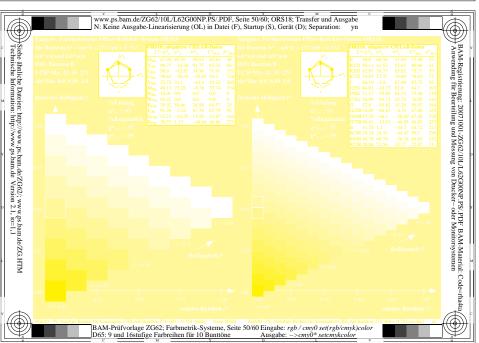

Natürlicher Farbverbindungsraum: relative Dreiecks-Helligkeit t^* relative Buntheit c^*

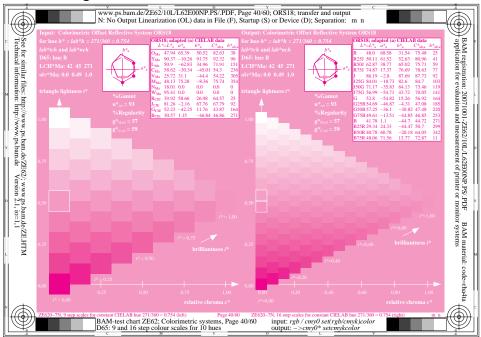

Relativer CIELAB-Farbraum: relative Helligkeit *I** relative Buntheit *c**

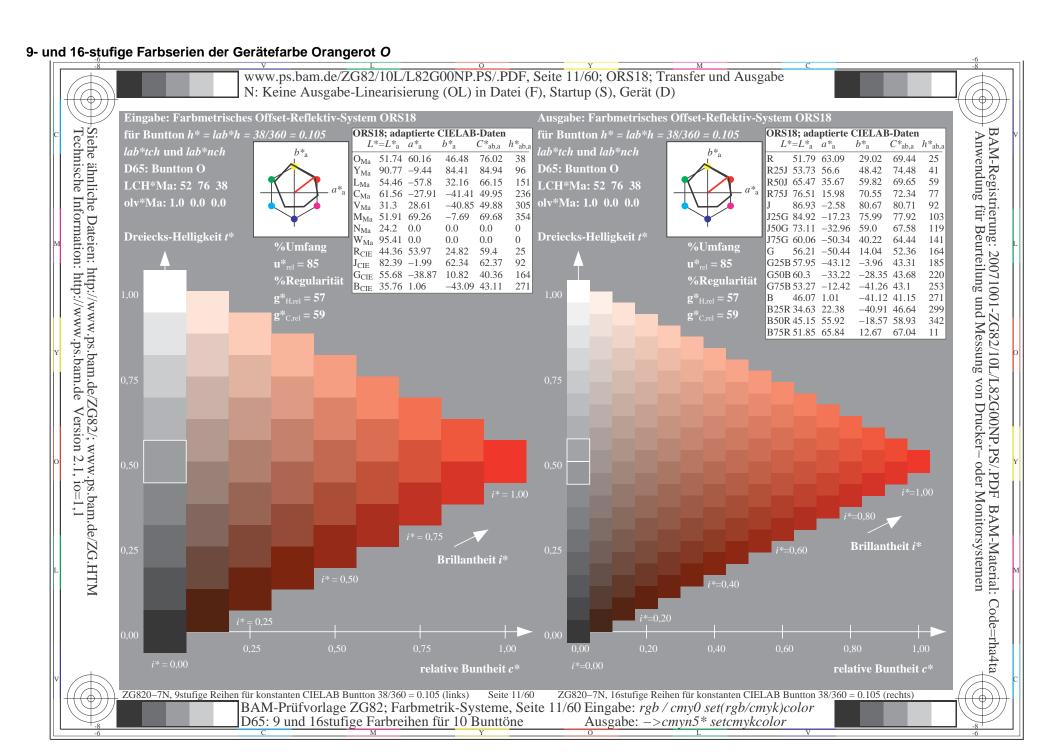

Relativer CIELAB-Farbraum: relative Helligkeit *I** relative Buntheit *c**

Natürlicher Farbverbindungsraum: relative Dreiecks-Helligkeit *t** relative Buntheit *c**

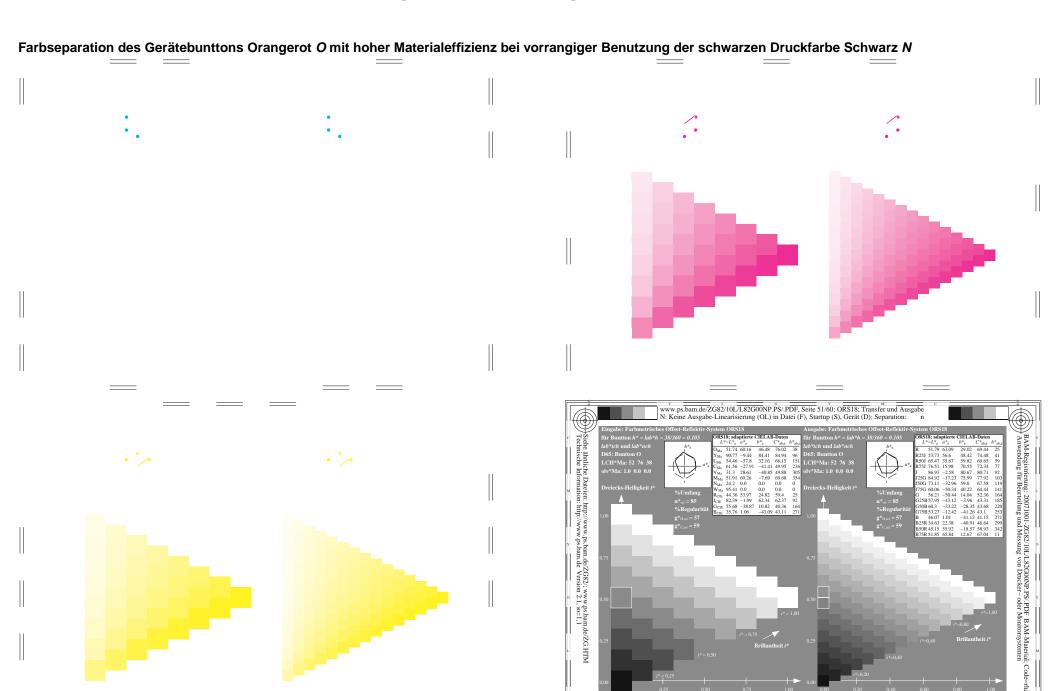



Absoluter CIELAB-Ausgabefarbraum: Helligkeit L^* Buntheit C^*_{ab}




K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 23/29

Farbseparation des Elementarbunttons Blau B mit niedriger Materialeffizienz und nur mit Benutzung der drei Buntfarben CMY



K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 25/29

n für konstanten CIELAB Buntton 38/360 = 0.105 (links) Seite 51/60 ZG820-7N, 16stufige Reihen für konstanten CIELAB Buntton BAM-Prüfvorlage ZG82; Farbmetrik-Systeme, Seite 51/60 Eingabe: rgb/cmy0 set(rgb/cmyk)color

Zusammenfassung

- Geräteabhängige Farbsysteme
- Elementarfarbensysteme
- Benutzerfreundliche rgb*- und ncu*-Farbkoordinaten
- Farbmetrische Verbindung von rgb*- und ncu* mit CIELAB für jedes Gerät
- Ausgabe mit hoher visueller Effizienz (16stufige Ausgaben sind gleichabständig gestuft) basierend auf Ausgabe-Linearisierung
- Ausgabe mit hoher Material-Effizienz (Grau wird aus Schwarz gedruckt und nicht aus 3 Farben) basierend auf verbesserter Farbseparations-Technologie
- Mehr Beispiele, siehe www.ps.bam.de/33872
- und Farbatlas REFS, siehe www.ps.bam.de/REFS

Dank

Ich danke insbesondere Herrn Dr. Jens Witt, Dr. Stefan Jaeger, Hans Wagenknecht, Philipp Kittelmann und Bernd Muschik (alle Mitarbeiter der BAM) für wissenschaftliche Anregungen und andere Unterstützungen dieser Arbeit

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 27/29

Literatur und Links zu Veröffentlichungen und Prüfvorlagen

CIE 15: 2004, Colorimetry

ISO/IEC 15775:1999, Information Technology – Office Systems – Method for specifying image reproduction of colour copying machines by analog test charts – Realisation and application, Editor: K. Richter.

ISO/IEC TR 19797:2004, Information Technology – Office Systems – Device output of 16-step colour scales, output linearization method (LM) and specification of the reproduction properties, Editor: K. Richter, Für Information und Prüfvorlagen nach ISO/IEC TR 19797 siehe http://www.ps.bam.de/19797TE

ISO/IEC TR 24705:2005, Information Technology – Office Systems – Method of specifying image reproduction of colour devices by digital and analog test charts, Editor: K. Richter, Für Information und Prüfvorlagen nach ISO/IEC TR 24505 siehe

http://www.ps.bam.de/24705TE

Hurvich, Leo. M (1981), Colour Vision, Sinauer Associates Inc, Sunderland, Massachusetts, ISBN 0 87893-336-0

Natural Colour System *NCS* (1982), Svensk Standard SS 01 91 0:1982, Colour notation system – SS 01 91 01:1982, CIE tristimulus values and trichromatic co-ordinates for some 16 000 colour notations according to SS 01 91 00 – SS 01 91 02:1982, Colour atlas – SS 01 91 02:1982, CIE tristimulus values and chromaticity co-ordinates for colour samples in SS 01 91 02

Richter, K. (1980), Cube root colour spaces and chromatic adaptation, Color Res. and Appl. 5, no. 1, S. 25-43

Richter, K. (1996), Computergrafik und Farbmetrik, Farbsysteme, PostScript, geräteunabhängige CIE-Farben, VDE-Verlag, Berlin, ISBN 3-8007-1775-1, 288 Seiten einschließlich CD-ROM und ungefähr 500 Farbbildern, siehe http://www.ps.bam.de/buch

Richter, Klaus (2005), Relative Colour Image Technology (RCIT) and RLAB lab* (2005) Colour Image Encoding, see (70 pages, 850 kByte)

http://www.ps.bam.de/RLABE.PDF

Richter, K. (2006), Device dependent linear relative CIELAB data *lab** and colorimetric data for corresponding colour input and output on monitors and printers, Proceedings of the ISCC/CIE Expert Symposium '06 "75 Years of the CIE standard colorimetric observer, CIE x030:2006, Seiten 139-155, vergleiche auch

http://www.ps.bam.de/CIE06.PDF

Richter, K. (2007), Relative CIELAB data nce* and rgb* based on eight CIELAB reference colours, siehe die URL (15 Seiten, 500 kByte)

http://www.ps.bam.de/CIE07R.PDF

Richter, K. (2007), Colorimetric model of logarithmic colour spaces, part II, siehe die URL (32 Seiten,1,1 MByte)

http://www.ps.bam.de/CIE07XPDF

Witt, J. (2006), Farbmetrische Methoden zur Herstellung von Prüfvorlagen für Farbkopierer, Farbscanner und Farbmonitore, Dissertation, TU Berlin, Fakultät IV, Elektrotechnik und Informatik, 177 Seiten, siehe die URL (177 Seiten, 8 MByte, PDF-Format)

http://opus.kobv.de/tuberlin/volltexte/2006/1363/

Kürzliche (2007) Entwicklung von Prüfvorlagen mit definierten Farbdaten, siehe

http://www.ps.bam.de/ZG.HTM

BAM-Prüfvorlagen nach Normentwurf DIN E 33872-1 to -6:2007 für relative affine Farbbildwiedergabe

http://www.ps.bam.de/33872E

K. Richter (2007), Farbmetrische Ergänzung zu DIN E 33872-1 bis -6 (39 Seiten, 1,4 Mbyte), siehe http://www.ps.bam.de/D33872_A.PDF

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 28/29

Anhang: Deutsche Normen und internationale Normdokumente für farbmetrische Bildwiedergabe

Eingabe	Ausgabe	Ein- und Ausgabemedien sow	Norm		
		Eingabemedium	Ausgabe Anwendu		
_	_	_	_	Grundlagen	DIN 33866-1
analog	analog	DIN-Prüfvorl. (Hardcopy)	Hardcopy	Kopierer	DIN 33866-2
analog	digital	DIN-Prüfvorlage (Hardcopy)	Datei	Scanner	DIN 33866-4
digital	analog	DIN-Prüfvorlage (Datei)	Hardcopy Softcopy	Drucker Monitor	DIN 33866-3 DIN 33866-5

YG900-3

Eingabe	Ausgabe	Ein- und Ausgabemedien sowie	Technischer Bericht		
		Eingabemedium	Ausgabe	Anwendung	(TR) oder Norm
_	_		_	Grundlagen	ISO/IEC TR 24705
analog	analog	ISO/IEC-Prüfvorl. (Hardcopy)	Hardcopy	Kopierer	ISO/IEC 15775
analog	digital	ISO/IEC-Prüfvorlage (Hardcopy)	Datei	Scanner	ISO/IEC TR 24705
digital	analog	ISO/IEC-Prüfvorlage (Datei)	Hardcopy Softcopy	Drucker Monitor	ISO/IEC TR 24705 ISO/IEC TR 24705

YG900-7

K. Richter: Farbatlas RECS digital und analog auf der Basis von Elementarfarben 29/29

Anmerkungen zum Farbatlas RECS (Relatives Elementarfarben-System)

Die digitale Farbe wird mit drei Farbwerten *rgb* beschrieben, deren Farbwerte z. B. im digitalen Farbenraum *sRGB* nach IEC 61966-2-1 zwischen 0 und 1 liegen. Die Farbwerte *rgb* werden nach dieser Norm aus den Normfarbwerten *XYZ* der Primärfarben Rot, Grün und Blau des CRT-Farbmonitors berechnet. Inzwischen gibt es eine Vielzahl neuer Monitor-Technologien, deren Buntton Blau z. B. bei der OLED- und CRT-Technologie so unterschiedlich ist wie die Bunttöne Rot und Gelb. Die Farbwerte *rgb* nach IEC 61966-2-1 sind daher zunehmend überholt und oft nicht mehr anwendbar.

Im Gegensatz dazu sind die Primärfarben *CMY* und Sekundärfarben *OLV* des Standard-Offsetdrucks seit 50 Jahren nahezu unverändert und auch in Zukunft sind kaum Änderungen zu erwarten. Daher werden hier neue besondere Farbwerte *rgb** definiert, die **linear** mit den Farbwerten der Normdruckfarben *LCH** im CIELAB-Farbsystem verknüpft sind. Die Druckfarbendaten sind z. B. in DIN 33866-1 angegeben. Damit lässt sich für die Druckfarben der Zusammenhang zwischen den digitalen Daten *rgb** und den analogen Daten *LCH** der Farbmuster berechnen und ein "Farbatlas digital und analog" herstellen.

Für die Definition und Herstellung wurde eine Reihe von Forderungen aus der Anwendungspraxis berücksichtigt. Die Normfarbmasszahlen *LCH** dienen z. B. zum Aufbau und der Herstellung des RAL-Farbsystems. Der digitale Farbatlas enthält daher auch die Farbmasszahlen *LCH** mit den Helligkeiten einer 16-stufigen Grauskala zwischen *L**=20 und *L**=95 (delta *L**=5).

Für Anwendungen in Digital- und Gestaltungstechnik ist konstante Bunttonwiedergabe von besonderer Bedeutung. Das Natürliche Farbsystem *NCS* benutzt die Elementarbunttöne Rot, Gelb, Grün und Blau (*RJGB* nach ISO./IEC 15775). Das menschliche Farbensehen kann leicht alle Bunttöne in Relation zu dieser vier Elementarbunttönen schätzen. Daher ergibt sich eine besonders sinnvolle Bunttoneinteilung, wenn die Koordinaten *rgb** für die Elementarbunttöne Rot, Grün und Blau (*RGB*) die Werte (1,0,0), (0,1,0) und (0,0,1) besitzen. Der vorliegende Farbatlas ist auf einem 16-teiligen Bunttonkreis aufgebaut mit jeweils 4 Bunttönen zwischen den Elementar-Bunttönen *RJGB*.

Die verschiedenen Forderungen aus der Anwendung führen daher zu dem als Testdruck vorliegenden analogen Farbatlas mit etwa 2000 Farben. Der Atlas wurde im Standard-Offsetdruck auf fluoreszenzfreiem Standard-Offsetpapier gedruckt (siehe DIN 33866-1). Die Farbmasszahlen *LCH** im CIELAB-Farbsystem der analogen Ausgabe und die zugehörigen Farbwerte *rgb** sind in einem digitalen Farbatlas im Internet frei verfügbar. Zusätzlich sind z. B. die anschaulichen Farbkoordinaten *icu** (*i** = Brillantheit, *c** = relative Buntheit, *u** = Elementarbunttonzahl) und viele weitere für die analogen Muster angegeben, vgl. DIN 33872-1 (im Druck).

Der vorliegende "Farbatlas digital und analog" ist eine weltweite Neuheit. Für die bisher definierten digitalen Farbwerte *rgb*, die alle auf Lichtfarben aufgebaut sind, lässt sich kein Farbatlas in Reflexion erstellen. In der Anwendung ist meist nur die relative Unterscheidbarkeit, z. B. der 16-stufigen Farbreihen, von besonderer Bedeutung und weniger die absolute Genauigkeit der Farbmuster. Diese relative Unterscheidbarkeit ist weitgehend unabhängig von verschiedenen Beleuchtungen im Büro und wird in DIN 33872-1 bis -6 geprüft, siehe

http://www.ps.bam.de/33872

Fuer allgemeine Informationen zum Farbatlas RECS siehe

http://www.ps.bam.de/REFS

Siehe auch die Webseite "Visuelle Methoden und Farbwiedergabe"

http://www.ps.bam.de

Für den digitalen Farbatlas , siehe z. B. (198 Seiten, 10 Mbyte)

http://www.ps.bam.de/Eg39/10L/L39g00NP.PDF

Author: Prof. Dr. Klaus Richter, Technische Universität Berlin, Fachgebiet Lichttechnik

Walterhoeferstrasse 44, D-14165 Berlin

Tel. +49 30 84 50 90 38, Fax +49 30 84 50 90 40

email: klaus.richter@mac.com