LABJND modifications of the colour space and the colour-difference	
formula by line elements for different applications	
Example line element in lightness direction of <i>Stiles</i> (1946), who uses the luminance <i>L</i> instead of the tristimulus value <i>Y</i> .	
$L^*(Y) = s \ln[1+9Y]$ s=scaling factor	[1a]
$d(L^*(Y)) / dY = 9s / [1+9Y]$	[2a]
For this derivation, and for the lightness threshold $d(L^*(Y))=1$ it is valid:	
dY = [1+9Y] / 9s	[3a]
For the normalization with the surround values $Y_u = 18$, dY_u and $L^*(Y_u)$:	
$dY/dY_{\rm u} = [1+9Y] / [1+9Y_{\rm u}]$	[4a]
$L^{*}(Y) / L^{*}(Y_{u}) = \ln[1+9Y] / \ln[1+9Y_{u}]$	[5a]
For the LABJND colour-difference formula according to CIE 230:2019:	
$dY/dY_{u} = [A_{1}+A_{2}Y] / [A_{1}+A_{2}Y_{u}] A_{1}=0,0170, A_{2}=0,0058$	[1b]
It is valid with the definition $A_{2u} = A_2 Y_u / A_1 = 6,141$	
$dY/dY_{u} = [1 + A_{2u}(Y/Y_{u})] / [1 + A_{2u}]$	[2b]
$L^{*}(Y) / L^{*}(Y_{u}) = \ln[1 + A_{2u}(Y/Y_{u})] / \ln[1 + A_{2u}]$	[3b]
Line elements for the LABJND-colour space are NOT included in CIE 230.	
The value of A_{2u} is known for many applications, for example as function of	
the distance, the presentation time and the luminance of the samples.	

DEQ00-3N