Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours

The Weber-Fechner law describes the lightness L^{*}_{τ} as logarithmic function of L_{τ} . The Stevens law describes the lightness $L^{*}_{\tau}_{[TELAB}$ as potential function of L_{τ} =V/5. IEC 61966–2-1 uses a similar potential function L^{*}_{FF} = $m L_{\tau}^{1/2,4}$.

The Weber-Fechner law is equivalent to the equation: $\Delta L_{\tau} = c L_{\tau}$ Integration leads to the logarithmic equation: $L^{*}_{\tau} = \log(L_{\tau})$. Derivation for $\Delta L^{*}_{\tau} = 1$ leads to the linear equation: $L_{\tau}/\Delta L_{\tau} = k = 57$.

Derivation for $\Delta L_r^r = 1$ leads to the linear equation: $L_r / \Delta L_r = K = 5 / .$

For colours in offices the standard contrast range is 25:1=90:3,6. Table 1: CIE tristimulus value Y luminance L and lightnesses L*

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						relative lightness	
$ \begin{array}{c c} (paper) & = 18"5 & = 28.2"5 & = 50+44 & = klog(\\ Grey Z & 18 & 28.2 & 1 & 50 & 0 \\ (paper) & 18 & 5.6 & 0.2 & 18 & -40 \\ Ghaper) & = 18'5 & 28.2'5 & 50-32 & = klog(\\ \end{array} $		Y	L [cd/m ²]		L* _{CIELAB} ~m L _r ^{1/2,4}	L*r =k log(Lr)	
(paper) = klog(Black N 3,6 5,6 0,2 18 -40	White W (paper)			5	94	40 =k log(5)	
(paper) =18/5 28,2/5 50-32 =klog(18	28,2	1	50	0 =klog(1)	
For the lightness range between $L^{*} = 40$ and 40 the constant is $k = 40/\log(5)$.				0,2		$-40 = k \log(0,2)$	
For the lightless range between L r ==40 and 40 the constant is. k=40/log(3)=.	•	ss range betv	ween $L_{r}^{*}=-40$	and 40 the con	stant is: k=40	/log(5)=57	

DEH00-1N