					_
Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours and two ranges $0.2 \le L_r \le 1$ and $1 \le L_r \le 5$					
The Weber-Fechner law describes the lightness L_r^* as logarithmic function of L_r .					
The Stevens law describes the lightness $\tilde{L}_{\text{CIELAB}}^*$ as potential function of $L_r = Y/5$.					
IEC 61966-2-1 uses a similar potential function $L_{IEC}^* = m L_r^{1/2,4}$.					
The Weber-Fechner law is equivalent to the linear equation: $\Delta L_r = c_i L_r$ (i=0,1) [1]					
Integration leads to the logarithmic equation: $L_r^*=k_i \log(L_r)$ (i=0,1) [2]					
Derivation leads for $\Delta L_r^*=1$ to the linear equation: $L_r/\Delta L_r=k_i$ ($k_0=46$, $k_1=63$) [3]					
For colours in offices the standard contrast range is 25:1=90:3,6.					
Table 1: CIE tristimulus value Y, luminance L, and lightnesses L*					
Colour	Tritimulus	office	relative	CIE	relative
(matte)		luminance	luminance	lightness	lightness
(contrast)	Y	L	L_r	$L*_{CIELAB}$	L*-
(25:1=90:3,6)		[cd/m ²]	= <i>L</i> / <i>L</i> _u	$\sim m L_{\rm r}^{1/2,4}$	$=k \log(L_r)$
White W	90	142	5	94	44
(paper)	=18*5	=28,2*5		=50+44	$=k_1\log(5)$
Grev Z	18	28.2	1	50	0
(paper)	'	1			$=k_0\log(1)$
Black N	3,6	5,6	0,2	18	-32
(paper)	=18/5	28,2/5		50-32	$=k_0\log(0,2)$
For the two lightness ranges it is $k_0=-32\log(0.2)=46$ and $k_1=44\log(5)=63$.					
DEC00-2N					