Proposal for a Reportership in CIE Division 1 Colour border: luminous - blackish colours in white D65 surround

Version 1.0, (10 pages, 200 KB), CIE1_RS_11.PDF

K. Richter: email: klaus.richter@mac.com

Internet: Berlin University of Technology (TUB): http://130.149.60.45/~farbmetrik For recent publications of the TUB group see: http://130.149.60.45/~farbmetrik/XY91FEN.html

Title

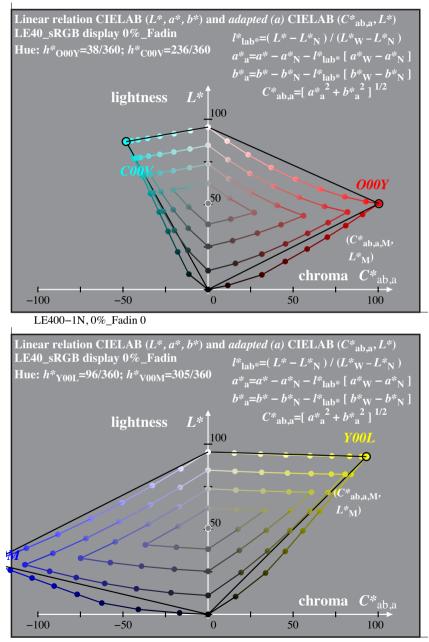
Colour border: luminous - blackish colours in white D65 surround

Terms of Reference

Study the literature which determines by psycho-physical and physiological experiments the colour border between luminous and blackish colours in white surrounds.

The report may include CIE tristimulus values *Y* as function of chromaticity (*x*, *y*) for D65. For applications the CIE data of optimal colours, for example with the complementary wavelength limits 475nm - 575nm (which have approximately maximum chroma C^*_{ab} (see *Hoffman*), and of the CIE-test colours no. 9 to 12 (approximately elementary hues according to CIE R1-47) of CIE 13.3 are important. The experimental data of *Hoffman* (1962), *Evans* (1974), and of zero blackness of the *Natural Colour System NCS* (1981), and physiological data of *Valberg* (2005) may be considered. For imaging application of displays the white surround D65 is preferred.

berlin


Background information from image technology

basic and mixed colors of standard colour displays (<i>sRGB</i> colour space)								
basic color or mixed color and	CIE standard chromaticity		CIE stan tristimul					
name	x	У	X	Y	Ζ			
three additive basic colors:								
$O = R_{\rm d}$ Orange red	0,6400	0,3300	43,03	22,19	2,02			
$L = G_{\rm d}$ Leaf green	0,2900	0,6000	34,16	70,68	12,96			
$V = B_{\rm d}$ Violet blue	0,1415	0,0482	17,82	7,13	93,87			
three additive mixed colors:								
C Cyan blue	0,2197	0,3288	51,98	77,81	106,83			
M Magenta red	0,3270	0,1576	60,85	29,32	95,89			
Y Yellow	0,4172	0,5019	77,19	92,87	14,98			
D65 (White)	0,3127	0,3291	95,01	100,00	108,85			

ME411-7, BT5_02

Fig. 1: Display colours of sRGB display according to IEC 61966-2-1

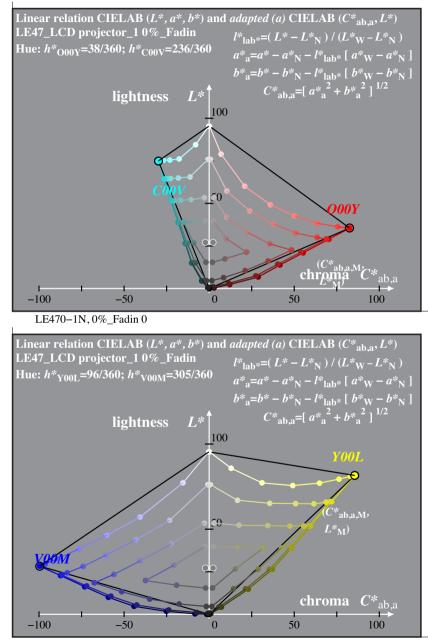


Fig. 2: CIELAB diagrams (C^*_{ab} , L^*) of sRGB display and LCD projector

New problems for image technology applications

For example the three tristimulus values *Y* of the device colours $Y_{R}+Y_{G}+Y_{B}$ do not any more mix to $Y_{W}=100$. This was the case for the standard *sRGB* display (compare the data $Y_{R}+Y_{G}+Y_{B}=100$ in Fig. 1).

Fig. 2 shows the CIELAB hue diagrams of the standard *sRGB* display *(left side)* and of a real projector *(right side)*. The lightness is normalized to equal values in all cases (L^* =95 according to ISO/IEC 15775).

All colours of the projector display *(right side)* are darker compared to the *sRGB* display. Therefore the appearance is more blackish (greyish) compared to the *sRGB* display. The sum of the three tristimulus values is less than 100 or $Y_{\rm R}+Y_{\rm G}+Y_{\rm B} < Y_{\rm w}$. The sum may be only 50%.

Similar all colours of some real *LED* and *OLED* displays are lighter compared to the standard *sRGB* display. Therefore the appearance is more luminous compared to the *sRGB* display. The sum of the three tristimulus values is larger than 100 or $Y_{R}+Y_{G}+Y_{B}>Y_{w}$. The sum may be 200%. For examples and simulations see Fig. 4 and 5.

3

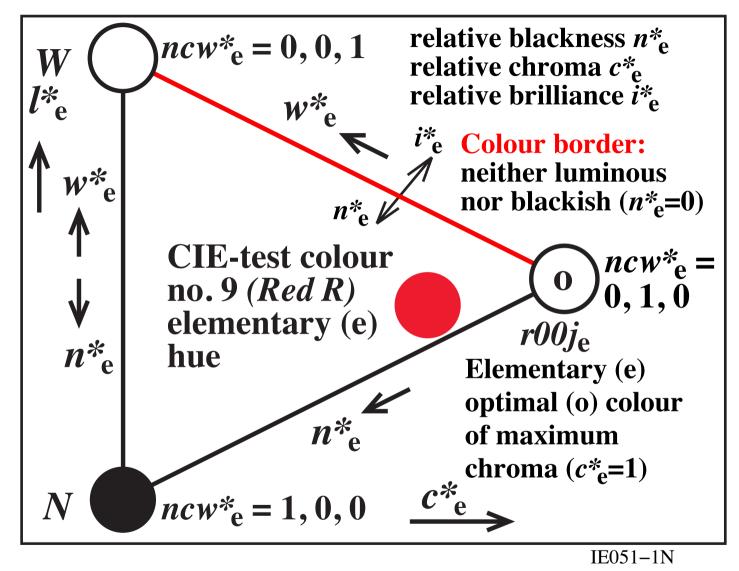


Fig. 3: Colour border: neither luminous nor blackish colours For the elementary (e) hue the relative coordinates c^* and l^* are used. The CIELAB relative lightness l^* and chroma c^* is related to n^* and i^* .

3

Basic and mixed colors of standard sRGB and a special LED display							
basic color or	CIE standard		CIE standard				
	chromaticity		tristimulus value				
name	x	У	X	Y	Ζ		
sRGB display: three additive basic colors and White:							
$O = R_{\rm d}$ Orange red	0,6400	0,3300	43,03	22,19	2,02		
$L = G_d$ Leaf green	0,2900	0,6000	34,16	70,68	12,96		
$V = B_{\rm d}$ Violet blue	0,1415	0,0482	17,82	7,13	93,87		
W White	0,3127	0,3291	95,01	100,00	108,85		
special LED display: three additive basic colors and White:							
$\hat{O} = R_{\rm d}$ Orange red		0,3300		22,19+21%	2,02+21%		
$L = G_{d}$ Leaf green		0,6000	34,16+21%	70,68+21%	12,96+21%		
$V = B_{\rm d}$ Violet blue							
W White	0,3127	0,3291	95,01+0%	100,00+0%	108,85+0%		
Assumption: Display of 142+30 cd/m ² (=+21% compared to office standard)							
<i>rgb</i> input data for D65 and internal 10%-change of l^* : 1,0 1,0 1,0 -> 0,9 0,9 0,9							
<i>rgb</i> input data for Red and no internal display change: $1,00,00,0 = 1,00,00,0$							
Result: The office luminance 142 cd/m^2 for 500 lux on White paper is matched.							
CIELAB lightness L* and chroma C^*_{ab} of Red is 10% higher for the LED display.							
C					PE000–3N		

Fig. 4: Basic and mixed colours of the *sRGB* and a special *LED* display If the display white is reduced from the relative lightness $I^* = 1$ to $I^* = 0,9$ and there is no change for *Red*, then both L^* and C^*_{ab} increase by 10%.

3

Example files: Basic and mixed colors of a special LED display						
	CIE standard chromaticity		tristimulus value			
name	x	У	X	Y	Ζ	
special LED display.	: three add	itive basic c	colors and Whit	te:		
$\bar{O} = R_{\rm d}$ Orange red					· · · · · · · · · · · · · · · · · · ·	
$L = G_d$ Leaf green						
$V = B_{\rm d}$ Violet blue	0,1415	0,0482	17,82+44%	7,13+44%	93,87+44%	
W White	0,3127	0,3291	95,01+0%	100,00+0%	108,85+0%	
Assumption: Display of 142+64 cd/m ² ($Y = +44\%$ compared to office standard)						
rgb input data for Re						
<i>rgb</i> input data for D6	65 and inte	rnal 20%-cł	nange of <i>l*:</i> 1	,0 1,0 1,0 ->	0,8 0,8 0,8	
See example simulation files with 0, 5, 10,, 35% change and						
white frame:	http://13	30.149.60.4	5/~farbmetrik/I	LE52/LE52L0	NP.PDF	
grey frame:						
Compare for example samples 01b (White) and 01j (Orange red) on different pages						
Result: Lightness L^* and chroma C^*_{ab} of Red is 20% higher for the LED display.						
relative brilliance $i^* = l^* + 0.5 c^*$ of Red is 30% higher for the LED display.						
relative blackness n*						
					PE000-7N	

Fig. 5: Example Files: Basic and mixed colours of a special *LED* display Both CIELAB lightness L^* and chroma C^*_{ab} of *Red* increase by 20%. Relative brilliance *i*^{*} and relative blackness *n*^{*} change by 30%.

Goal of the Reportership

It is intended to search in the literature for the CIE tristimulus values Y as function of CIE chromaticity (x,y) of many colours at the colour border between neither luminous nor blackish.

Examples are given in book of *Evans* (1974) and in the *Swedish Natural Colour System NCS* (1981).

The optimal colours with complementary wavelength limits for D65, for example 475nm-575nn, 380nm-562nm, 493nm-780nm are approximately (see *Hoffmann* (1962)) the most chromatic of all possible optimal surface colours. They may define the border line luminous - blackish.

For imaging applications the tristimulus values Y at the border luminous blackish are of importance for the four chromaticities (x,y) of the CIE-test colours no. 9 to 12 (compare the report CIE R1-47:2008).

For TC1-81 "Small Colour Differences" the tristimulus value Y at the border luminous - blackish may be the point of the largest discriminability $Y/\Delta Y$. This point may have the largest slope of the physiological signals (S-shape functions) shown in the next Fig. 6.

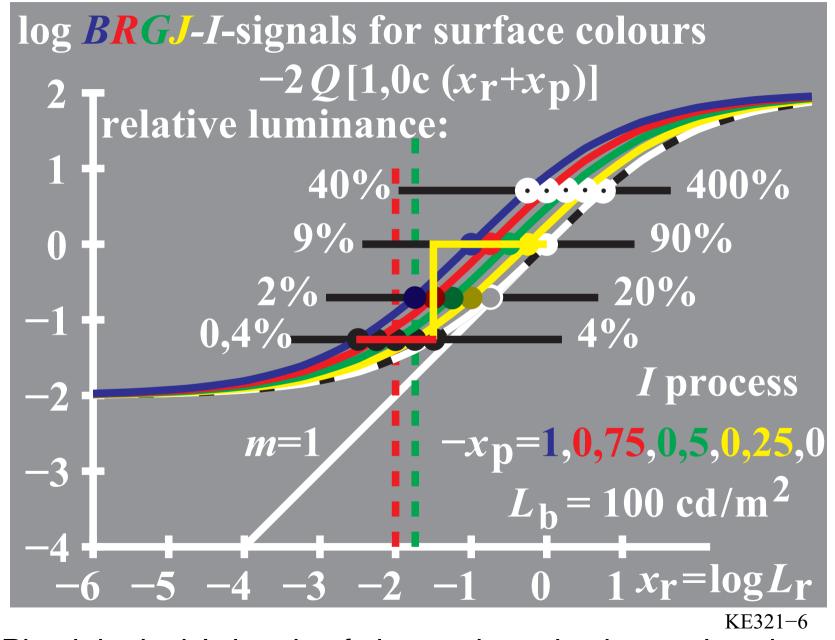


Fig. 6: Physiological *I*-signals of chromatic and achromatic colours.

According to Fig. 6 the relative luminance of Blue B is only 10% compared to White W (compare 7% in Fig. 1 for the sRGB display).

For TC1-69 "Colour Rendering of White Light Sources" the increase of CIELAB lightness L^{*}, chroma C^*_{ab} , relative lightness l^{*}, relative brilliance *i*^{*} for Red (and similar for Green) is of interest.

For example the spectral power of a 3-band light source is usually reduced in the yellow region near 575nm. This may increase the CIELAB lightness L^{*}, chroma C^*_{ab} , relative lightness I^{*}, and relative brilliance i^{*} by for example 15%. This is expected because the very less saturated yellow region is deleted. Therefore new reference samples, and a newer colour metric is possible for both lighting and image technology.

Literature:

Evans, R (1974), The perception of Color, Wiley, John & Sons, Incorporated, 250 pages Hard, A. and Lars Sivik (1981), NCS - Natural Color System: A Swedish standard for color notation, Color Research and Application, no. 3

Hoffmann, K. D. and P. Weisenhorn (1962), Zur Ermittlung der Farben groesster Buntkraft (Determination of colors of maximum chroma), Experientia 18, 525, Birkhaeuser, Basel, 1-14 Valberg, A. (2005), Light, Vision, Color, Wiley, ISBN 0 470 84903 7, 462 pages