Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours

The Weber-Fechner law describes the lightness L^{*}_{τ} as logarithmic function of L_{τ} . The Stevens law describes the lightness $L^{*}_{\tau}_{[TELAB}$ as potential function of L_{τ} =V/5. IEC 61966–2-1 uses a similar potential function L^{*}_{FF} = $m L_{\tau}^{1/2,4}$.

The Weber-Fechner law is equivalent to the equation: $\Delta L_{\tau} = c L_{\tau}$ Integration leads to the logarithmic equation: $L^{*}_{\tau} = \log(L_{\tau})$. Derivation for $\Delta L^{*}_{\tau} = 1$ leads to the linear equation: $L_{\tau}/\Delta L_{\tau} = k = 57$.

Derivation for $\Delta L_r^r = 1$ leads to the linear equation: $L_r / \Delta L_r = K = 5 / .$

For colours in offices the standard contrast range is 25:1=90:3,6. Table 1: CIE tristimulus value Y luminance L and lightnesses L*

Colour (matte)	Tritimulus value	office luminance	relative luminance	CIE lightness	relative lightness
(contrast) (25:1=90:3,6)	Y	L [cd/m ²]	Lr =L/Lu	$L^{*}_{CIELAB} \sim m L_{r}^{1/2,4}$	L_r^* = $k \log(L_r)$
White W (paper)	90 =18*5	142 =28,2*5	5	94 =50+44	40 =k log(5)
Grey Z (paper)	18	28,2	1	50	0 =klog(1)
Black N (paper)	3,6 =18/5	5,6 28,2/5	0,2	18 50-32	$-40 = k \log(0,2)$
For the lightness range between $L_r^*=-40$ and 40 the constant is: $k=40/\log(5)=57$					
CEA 50 IN					

CEA50-1N