http://farbe.li.tu-berlin.de/BGA4/BGA4L0NP.PDF/.PS; nur Vektorgrafik VG; Start-Ausgabe N: Keine 3D-Linearisierung (OL) in Datei (F) oder PS-Startup (S), Seite 1/1 Farbdifferenz ΔE^*_{ab} an Schwelle Empfindungs-Stufungsfunktionen Linien-Element von Stiles Die Weber-Fechner-Gesetz-Helligkeit L^s_i ist eine logarithmische Funktion von L bie Srevens-Gesetz-Helligkeit L^s_{TELAB} , ist eine Potenzfunktion von L_{TEC} = $L_{\text{TEC$ Helligkeit L^* und Hellbezugswert Y (1946) mit "Farbwerten" L_P , M_D , S_T Siehe ähnliche Dateien: http://farbe.li.tu-berlin.de/BGA4/BGA4.HTM Drei separate Farb-Signalfunktionen Adaptation auf Umgebung Weiß: führt zur logarithmischen Gleichung: $L^*_r = k_i \log(L_r)$ (i=0,1) $F(\underline{L}_{P}) = i \ln(1 + 9 \underline{L}_{P})$ $L^* = 100 (Y/100)^{1/2,0}$ $F(M_{\rm D})=j\ln(1+9M_{\rm D})$ Adaptation auf Umgebung Grau: $F(S_T)=k\ln(1+9S_T)$ $L^* = 100 (Y/100)^{1/2,4}$ Taylor-Ableitungen: L^*_{CIELAB} $\sim m L_r^{1/2,4}$ Beschreibung durch CIELAB 1976: $\Delta F(\mathbf{L}_{\mathbf{P}}, \mathbf{M}_{\mathbf{D}}, \mathbf{S}_{\mathbf{T}}) = \frac{\mathbf{d}F}{\mathbf{d}\mathbf{L}_{\mathbf{P}}} \Delta \mathbf{L}_{\mathbf{P}} + \frac{\mathbf{d}F}{\mathbf{d}\mathbf{M}}$ $L^* = 116 (Y/100)^{1/3,0} - 16$ Adaptation auf Umgebung Schwarz: Farbmusterlücke in mm $L^* = 100 (Y/100)^{1/3,0}$ $\log \Delta L = \log |L_2 - L_1| L = \text{Leuchtdichte}$ gleichabständige Farbstufung F(u) ..Impulsrate = Impulse / s dF(u)/du "Impulsraten-Änderung" Schwellen-Prozeß Weiß W $2Q[1,0(u-u_0)]$ $\{-2O[1,0(u-u_0)]\}/du$ Schwellen-Prozeß A $1,000[1,4(u-u_0)]$ Stufung $d \{1,000[1,4(u-u_0)]\}/du$ Stufung Schwellen-Prozeß Schwarz N $L_{\rm n} = 100 \, {\rm cd/m}^2$ D65 $\log \Delta Y = \log |Y_2 - Y_1|$ $\overline{\text{Log }\Delta L} = \overline{\text{log } |L_2 - L_1| \ L} = \overline{\text{Leuchtdichte}}$ $L/\Delta L = L/|L_2-L_1|$ $L / \Delta L = L / |L_2 - L_1|$ oder http://color.li.tu-berlin.de =Hellbezugswert = Y., (Umfeld grau) **— 10** $\log (L/\Delta L) = \log (L/|L_2 - L_1|)$ $L/\Delta L = L/|L_2 - L_1|$ $L/\Delta L = L/|L_2 - L_1|$ Schwellen **CIELAB** Stufung [cd/m Schwellen $L/\Delta L = \text{const.}$ TUB-Prüfvorlage BGA4; Separate und aneinandergrenzende Farben Eingabe: rgb/cmy0/000k/n Schwellen für Leuchtichte, Kontrast und Kombinationen; logarithmische Linienelemente