Discriminability of colours with 20 hues (Yes/No decision)

Layout example: Discriminability of colours with 20 hues.

There are four elementary hues on each page: $\operatorname{Red} \boldsymbol{R}_{\mathbf{e}}$, Yellow $\boldsymbol{Y}_{\mathbf{e}}$, Green $\boldsymbol{G}_{\mathbf{e}}$, and Blue $\boldsymbol{B}_{\mathbf{e}}$. Input data 100 may produce: $\operatorname{Red} \boldsymbol{R}_{\mathbf{e}}$. Input data 010 may produce: Green $\boldsymbol{G}_{\mathbf{e}}$. Input data 001 may produce: Blue $\boldsymbol{B}_{\mathbf{e}}$. Input data 110 may produce: Yellow $\boldsymbol{Y}_{\mathbf{e}}$.
Four hue steps are between:
Red $\boldsymbol{R}_{\mathbf{e}}$ and Yellow $\boldsymbol{Y}_{\mathbf{e}}$, Yellow $\boldsymbol{Y}_{\mathbf{e}}$, and Green $\boldsymbol{G}_{\mathbf{e}}$. Green $\boldsymbol{G}_{\mathbf{e}}$ and Blue $\boldsymbol{B}_{\mathbf{e}}$, Blue $\boldsymbol{B}_{\mathbf{e}}$, and $\operatorname{Red} \boldsymbol{R}_{\mathbf{e}}$.
This test uses a hue circle with 20 hues.
All 20 hues should be distinguishable.
For this test it is not necessary:

1. All 20 differences are visually equal.
2. Elementary hues locate at $00,05,10$, and 15 .

Are all $\mathbf{2 0}$ colours of the $\mathbf{2 0}$ hues distinguishable?

Only in case of 'No":

The colours of the two hue steps no. (e. g. 00 and 01)
The colours of the two hue steps no. (e. g. 14 and 15)
The colours of the two hue steps no. (e. g. 15 and 16)
\qquad .are not distinguishable. List other pairs:
Result: Of the 20 hue differences are (e.g. 18) . \qquad differences visible.

