Funktion der relativen Helldichte $h = \ln H = k(x-u) \ln = \text{natürl. Log.}$

Technische

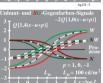
che Dateien: http://www.ps.bam.de/ Information: http://www.ps.bam.de

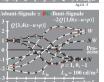
g12/; www /ersion 2.1

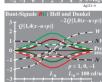
.ps.bam.de/Ag.HTN

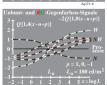
 $Q' = \frac{\mathbf{d}}{3H} \left[\ln \left\{ 1 + 1/(1 + \sqrt{2}H) \right\} \right] / \ln \sqrt{2}$ $=-\sqrt{2}/[\ln\sqrt{2}(1+\sqrt{2}H)(2+\sqrt{2}H)]$ Funktionswerte: $O'[k(x-u) \to +\infty] = 0$

Doppel-Linienelement von Richter (1987) für die Lichttechnik mit der Leuchtdichte L=F(P, D, T)Leuchtdichte-Signalfunktion F(L)i O(H) (x < u)F(L) = iO(H) =


Doppel-Linienelement von Richter (1987) für die Lichttechnik mit der Leuchtdichte L=F(P, D, T)Leuchtdichte-Signalfunktion F(L) $H = e^{k(x-u)}$ F(L) = iO(H) $O[\ln\{1+1/(1+\sqrt{2}H)\}]/\ln\sqrt{2}-1$


mit: $L = 10^x$ $H = e^h = 10^{\log e \cdot k(x-u)}$


 $dL/dx = \ln 10L$ dH/dx = kHEs folgt: $L/\Delta L = [kH/(dH \ln 10)]$


 $\frac{L}{dL} = \operatorname{const} H / [(1 + \sqrt{2}H)(2 + \sqrt{2}H)]$

[k(x-u) = 0] = Maximum

BAM-Material:

BAM-Prüfvorlage Ag12; Richter: Computergrafik und Farbmetriknput: cmy0* setcmykcolor Farbbuchserien: Farbskalierung und Farbschwellen Nr. 4 output; no change compared to input